Particle density in spherical geometry

parsec
Messages
112
Reaction score
1

Homework Statement



Neutrons are emitted uniformly from the inner surface of a thin spherical shell of radius R at a velocity V. They are emitted normal to the inner surface and fly radially across the volume of the sphere to be absorbed at diametrically opposed points. The neutrons are non interacting and do not collide. Express the neutron density at radius r as a function of the emitted neutron current and neutron velocity.

Homework Equations



I don't really have any, other than some simple continuity equations and equations for the area and volume of a sphere.

The Attempt at a Solution



I can think of an ad hoc way to do this, by taking the ratios of the surface areas, and expressing the density as some function of this ratio, but it doesn't seem correct.
 
Last edited:
Physics news on Phys.org
I've rationalised that for linear geometry ρ=I/AV where I is the current, A the surface area and V is the velocity. Applying this relationship to this scenario simply yields ρ=I/V4∏r^2

This doesn't seem quite right though.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top