Particle Position Calculation Using Tangent Velocity Vector

  • Thread starter Thread starter tandoorichicken
  • Start date Start date
  • Tags Tags
    Particle Position
tandoorichicken
Messages
245
Reaction score
0
Can someone please check my work on this?

Problem: Suppose that a particle following the given path c(t) flies off on a tangent at t = t_0. Compute the position of the particle at the given time t_1.
Given: \vec{c}(t)=(e^t, e^{-t}, \cos{t}), t_0=1, t_1=2

Here's how I did it:
The tangent to the position vector at any time is the velocity vector, so:
\vec{v}(t)=(e^t, -e^{-t}, -\sin{t})
\vec{v}(t_0)=(e, -\frac{1}{e}, -\sin{1}) = \vec{c}_0 (t_0)
where I define \vec{c}_0 (t) as the position along the tangent at time t.
Then, the position at t_1 is:
\vec{c}(t_0)+\vec{c}_0 (t_0) = (2e,0, \cos{1}-\sin{1})

Does this result make sense?

Edit: Actually, I think the proper final equation should be \vec{c}(t_0)+(t_1-t_0)\vec{c}_0 (t_0) = (2e,0, \cos{1}-\sin{1}) but in this case the answer comes out the same.
 
Last edited:
Physics news on Phys.org
I got the same answer, but your notation (using c and c0 instead of c and v) confused me for a moment.

-Dale
 
Thanks, Dale. Sorry about the notation, it made more sense in my head :-p
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top