Partition function related to number of microstates

AI Thread Summary
The discussion centers on the relationship between the partition function and the number of microstates in statistical mechanics. The partition function, defined as Z = ∑i e^(-βεi), is linked to the Helmholtz free energy and the Shannon entropy, leading to the conclusion that Z is related to the number of microstates (Ω) by the equation Ω = Ze^(βU). However, it is clarified that Boltzmann's entropy formula applies only to microcanonical ensembles, while the partition function pertains to canonical ensembles where microstates are not equally likely. The confusion arises from mixing the entropies of the system and its environment, with the correct interpretation showing that the total number of configurations can be expressed as a product of the microstates of the environment and the partition function. The final result suggests that the relationship Ω_env = Ω(E)e^(-βU) is valid, although it is noted that this specific result is not commonly encountered.
Troy124
Messages
3
Reaction score
0
Hi,

I have a question about the partition function.

It is defined as ## Z = \sum_{i} e^{-\beta \epsilon_{i}} ## where ##\epsilon_i## denotes the amount of energy transferred from the large system to the small system. By using the formula for the Shannon-entropy ##S = - k \sum_i P_i \log P_i## (with ##k## a random constant or ##k_B## in this case), I end up with the following: $$ S = - k \sum_i P_i \log P_i = (k \sum_i P_i \beta \epsilon_i) + (k \sum_i P_i \log Z) = \frac{U}{T} + k \log Z $$

This simplifies to ##Z = e^{-\beta F}## by using the Helmholtz free energy defined as ##F = U - T S##. But Boltzmann's formula for entropy states ##S = k \log \Omega##, where ##\Omega## denotes the number of possible microstate for a given macrostate. So we will get $$ \Omega = e^{S/k} = e^{\beta (U - F)} = Z e^{\beta U} $$

So the partition function is related to the number of microstates, but multiplied by a factor ##e^{\beta U}##. And this bring me to my question: why is it multiplied by that factor? Maybe the answer is quite simple, but I can't seem to think of anything.
 
Physics news on Phys.org
Troy124 said:
Hi,

I have a question about the partition function.

It is defined as ## Z = \sum_{i} e^{-\beta \epsilon_{i}} ## where ##\epsilon_i## denotes the amount of energy transferred from the large system to the small system. By using the formula for the Shannon-entropy ##S = - k \sum_i P_i \log P_i## (with ##k## a random constant or ##k_B## in this case), I end up with the following: $$ S = - k \sum_i P_i \log P_i = (k \sum_i P_i \beta \epsilon_i) + (k \sum_i P_i \log Z) = \frac{U}{T} + k \log Z $$

This simplifies to ##Z = e^{-\beta F}## by using the Helmholtz free energy defined as ##F = U - T S##. But Boltzmann's formula for entropy states ##S = k \log \Omega##, where ##\Omega## denotes the number of possible microstate for a given macrostate. So we will get $$ \Omega = e^{S/k} = e^{\beta (U - F)} = Z e^{\beta U} $$

So the partition function is related to the number of microstates, but multiplied by a factor ##e^{\beta U}##. And this bring me to my question: why is it multiplied by that factor? Maybe the answer is quite simple, but I can't seem to think of anything.

Boltzmann's formula ##S = k_B \ln \Omega## is applicable only to the case of a microcanonical ensemble - a system in which every microstate is equally likely. Note that setting ##P_i = 1/\Omega## in ##S = -k_B \sum_{i=1}^\Omega P_i \ln P_i## gives Boltzmann's formula.

The partition function ##Z = \sum_i \exp(-\beta \epsilon_i)## corresponds to a canonical ensemble. The microstates in a canonical ensemble are not equally likely, so Boltzmann's formula ##S = k_B \ln \Omega## does not apply. (However, the more general formula, ##S = -k_B \sum_{i=1}^\Omega P_i \ln P_i##, does still apply).

You can thus not equate ##\Omega## to ##Ze^{\beta U}##, as the two formulas you used for entropy are not simultaneously true.
 
Hi,

Thanks for your reply. I finally figured out that I mixed up the entropy of the environment with the entropy of the system, because my idea was that the total system, so environment + system, could be described by the microcanonical ensemble and I could use Boltzmann's formula, but then you will end up with something different:

The system including its environment can be described as a microcanonical ensemble. The number of possible configurations for this ensemble are ##\Omega_{total} = \sum_i w_i## where ##w_i## denotes the number of possible configurations given an ##\epsilon_i##.

We know $$w_i = \Omega (E-\epsilon_i) \Omega (\epsilon_i)$$ (with ##\Omega (\epsilon_i) = 1##, ##\Omega (E-\epsilon_i)## the number of microstates of the system when its energy equals ##E-\epsilon_i## and ##\Omega (E)## the number of microstates of the environment, when it is not thermally connected to another system) and thus $$ \Omega_{total} = e^{S_{total}/k} = e^{S/k} e^{S_{env}/k} = e^{\beta (U - F)} \Omega_{env} = \sum_i \Omega (E - \epsilon_i) = \Omega (E) \sum_i e^{-\beta \epsilon_i} = \Omega (E) e^{-\beta F}$$

This simplifies to $$ \Omega_{env} = \Omega (E) e^{-\beta U}$$

Do you know if this is correct, because I have never seen this result before. It does seem okay to me though.
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Back
Top