The question is, what you mean by "derive particles from QFT" (no matter whether in the Hilbert-space or the path-integral formulation). From the very beginning, you consider QFT as a description of particles (if applied to elementary-particle physics ;-)).
So the question is, what do you define as a particle. Let's look at another application of QFT, namely many-body theory (be it non-relativistic as in most condensed-matter applications or relativistic as in heavy-ion physics). Then you describe the single-particle properties of the many-body system (you see, also here we start from the idea of particles from the very beginning!) with help of the two-point in-medium Green's function (i.e., the propagator in the Schwinger-Keldysh real-time formulation). As it turns out, in many cases, that the spectral function associated with this Green's function has very narrow peaks as function of energy at fixed momentum. Then, you have something which is very close to free particles in the vacuum, because the Green's function of a free particle in the vacuum just has a pole at the on-shell point p_0=\sqrt{\vec{p}^2+m^2} (for relativistic particles). Thus, one has a situation, where you can think in terms of "particles" when considering the one-particle excitations of the medium. Usually, these "particles" have different properties than the particles in the vacuum, with which you started with. E.g., in condensed matter physics very often you can build an effective theory of fermions in the medium which have the same quantum numbers as electrons but have a larger mass ("heavy electrons"). In other cases you may find excitations with totally different properties than the particles you started with. E.g., in solid-state physics of metals you start with a lattice of positively charged ions and some more or less freely moving electrons and you find not only electron-like degrees of freedom (perhaps with modified masses) but also collective modes corresponding to the quantized vibrations of the crystal lattice. These quasiparticles are called phonons, and an effective model of interacting electrons and phonons often can be a good description of the metal.
Sometimes you find very exotic things, when investigating many-body systems. E.g., in certain materials, called "spin ice", you find collective modes that can be described by quasiparticles that behave like Dirac's magnetic monopoles. Or take the phantastic material, graphen, where you have a single layer of graphite, for which the electrons are effectively bound to a plane. Calculating the quasiparticle excitations of these electrons leads to quasiparticles that behave like massless Dirac fermions in two dimensions (among other very exciting things).