Pauli exclusion, symmetry, and electric repulsion

MadRocketSci2
Messages
47
Reaction score
1
I have a few questions about the Pauli exclusion principle:

1. Why do physicists believe that the symmetry in the wavefunction we assign to particles (indistinguishability) is due to an actual restriction in the physical state space that the particles can occupy (the attributes following from assuming "indistinguishability" is something "fundamental") versus the inability of our measurements to distinguish between two particles?

It seems to me that (as in classical physics), if all present measurements fail to distinguish between two particles (electron A and electron B in a well), then there is nothing lost (or gained) (relative to that set of distinguishing measurements) between representing the state with or without the symmetry. Introduce a measurement that treats electron A and electron B differently (we suddenly discover a new distinguishing property or something), and now you can no longer adequately represent the state symmetrically.

(hypothesis A: The two particles have some required symmetry to the actual physical state that nature uses to do it's thing, hence we cannot detect any difference between Phi(x1,x2) and Phi(x2,x1)

hypothesis B: We have no measurements that can distinguish between two exchanged particles, so physics can be represented by a symmetric (or antisymmetric) wavefunction, which may be a reduced projection of the actual state space nature uses to do it's thing

We may have no reasons to favor the more complicated hypothesis B, but do we have any reasons to reject it?)

2. The Pauli exclusion principle is invoked to explain why electrons cannot occupy the same state. The antisymmetry of their wavefunction is imposed to enforce this. But if electrons were bosons, the electrostatic repulsion between them would *still* require that Phi(x,x) = 0 for all states of finite energy. What is the difference between the behavior of a "helium atom" with standard electrons versus ones that have "boson electrons" (which are nonetheless prevented from occupying the same state due to electric repulsion). Is there any difference? The square of an antisymmetric function and a symmetric function where the diagonals are forced to be zero seems like it would be drawn from the same set. If no distinction were made between fermions and bosons, would the same behavior arise from the presence or absence of interparticle forces that go to infinity as particles are forced into identical states?
 
Last edited:
  • Like
Likes 1 person
Physics news on Phys.org
MadRocketSci2 said:
1. Why do physicists believe that the symmetry in the wavefunction we assign to particles (indistinguishability) is due to an actual restriction in the physical state space that the particles can occupy (the attributes following from assuming "indistinguishability" is something "fundamental") versus the inability of our measurements to distinguish between two particles?
It's called the Spin-Statistics Theorem, and it's an absolutely fundamental result in QFT. Half-integer spin particles must be fermions, and integer spin particles must be bosons.

It seems to me that (as in classical physics), if all present measurements fail to distinguish between two particles (electron A and electron B in a well), then there is nothing lost (or gained) (relative to that set of distinguishing measurements) between representing the state with or without the symmetry.
QM is totally different in this respect from classical physics. The difference makes itself evident in thermodynamics, for example, where classical statistics leads to the Gibbs Paradox.

The Pauli exclusion principle is invoked to explain why electrons cannot occupy the same state. The antisymmetry of their wavefunction is imposed to enforce this. But if electrons were bosons, the electrostatic repulsion between them would *still* require that Phi(x,x) = 0 for all states of finite energy. What is the difference between the behavior of a "helium atom" with standard electrons versus ones that have "boson electrons" (which are nonetheless prevented from occupying the same state due to electric repulsion). Is there any difference?
Saying that the two-particle wavefunction ψ(x1, x2) vanishes when x1 = x2 does not prevent the two particles from being in the same state.
 
I haven't regarded the Gibbs paradox as paradoxical in a while. Isn't the real point of it that it forces you to recognize the fundamental subjectivity of any given entropy measure? Why wouldn't something similar apply to quantum physics?
 
"Saying that the two-particle wavefunction ψ(x1, x2) vanishes when x1 = x2 does not prevent the two particles from being in the same state. "

Well, it certainly means there is a zero amplitude for finding them in the same position state, right? This restriction would also apply to prevent everything from sitting in the seperable single-particle-ground-level energy state, wouldn't it? The more such restricted particles you add, the higher the joint energy, just as with fermion electrons.
 
Last edited:
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...

Similar threads

Replies
44
Views
3K
Replies
17
Views
3K
Replies
8
Views
2K
Replies
2
Views
2K
Replies
2
Views
2K
Replies
7
Views
2K
Replies
3
Views
1K
Back
Top