Pauli matrices with two spacetime indices

John Corn
Messages
2
Reaction score
0
"Pauli matrices with two spacetime indices"

Hi all. This is my first post so forgive me if my latex doesn't show up correctly. I am familiar with defining a zeroth Pauli matrix as the 2x2 identity matrix to construct a four-vector of 2x2 matrices, $\sigma^\mu$. I'm trying to read a paper which uses the notation $\sigma^{\mu \nu}$. This is between a 4-spinor and a gamma matrix. Can someone please enlighten me about what this notation means? Thanks so much.
 
Physics news on Phys.org


I vaguely remember it to be the (anti-?) commutator of two gamma matrices.
 


Thanks for the quick response Dr. Du. The anticommutator of gamma matrices is just $2 \eta^{\mu \nu} I_{4 \times 4}$, which hardly calls for new notation. One usually doesn't discuss commutators in relation to Clifford algebra, but I can't rule that out.
 


As far as I remember

\Sigma^{\mu\nu} := \frac{i}{2}\left[\gamma^{\mu},\gamma^{\nu}\right]_{-}

It has to do with the spin operator for the quantized massive Dirac field.
 


The Sigma matrices are usually used during the derivation of the Lorentz covariance and transformation properties of the Dirac equation. Later it is usually shown how to represent the Sigma matrices using thre gamma matrices.

So strictly speaking you don't need them (or you only need them in an intermediate step)
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I asked a question related to a table levitating but I am going to try to be specific about my question after one of the forum mentors stated I should make my question more specific (although I'm still not sure why one couldn't have asked if a table levitating is possible according to physics). Specifically, I am interested in knowing how much justification we have for an extreme low probability thermal fluctuation that results in a "miraculous" event compared to, say, a dice roll. Does a...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Back
Top