Pendulum Period change due to gravitational force change

AI Thread Summary
The discussion revolves around how adding a large mass on the floor affects the period of a pendulum due to a change in gravitational force. The formula for the pendulum's period, P = 2*pi*sqrt(l/g), indicates that the period is inversely proportional to the square root of gravitational acceleration. The user has calculated the extra vertical acceleration from the added mass and is considering how to apply this to determine the new period. A suggestion was made to perform rough calculations to assess whether the change in period would be detectable by the pendulum. The user expresses confidence in their approach after considering this advice.
Sekonda
Messages
201
Reaction score
0
Hey,

I was wondering how to go about a pendulum problem, basically if we have a clock pendulum that oscillates with period 2s unaffected; if we add a large mass on the floor, so that the pendulum experiences some small extra gravitational force towards the floor.

Now I have determined this force and therefore the extra vertical acceleration due to this added floor mass but I now have to determine how this affects the period.

So provided I know the extra vertical acceleration, how do I determine the effect this has on the period?

Thanks guys!
 
Physics news on Phys.org
I misread the problem. Comment deleted.
 
Last edited:
The period of a pendulum for small oscillation is

P = 2*pi*sqrt(l/g)

where l is pendulum length and g is acceleration of gravity.
 
So based on the fact that the length doesn't change it is safe to assume that period is inversely proportional to the square root of the acceleration and so it's just a case of using the new acceleration and the initial 'g' acceleration to find the difference in the periods.

I think this is most probably the way to go about the problem; though correct me if I'm wrong.

Thanks for the help!
S
 
I suggest you do a few rough calculations first.Think of the largest mass you could concievably put on the floor,work out how this would change the value of g and then work out whether a simple pendulum would be sensitive enough to detect the extremely small change of time period that this added mass would bring about.
 
Ahh I've only just seen your comment Dadface, clever idea; I "think" I've got the problem solved so I'll try doing that to see if my answer is reasonable.

Thanks,
S
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top