Pendulums & SHM Homework: True/False Equations

  • Thread starter Thread starter fogvajarash
  • Start date Start date
  • Tags Tags
    Shm
AI Thread Summary
Two identical pendulums are analyzed based on their initial conditions, with one released from rest and the other given an initial angular velocity. The discussion clarifies that after one period (T), both pendulums will have the same velocities but not reversed velocities, making statement A false. The initial phases of the pendulums differ, leading to different phases after 0.1 seconds, which makes statement C false as well. The equation of motion for both pendulums is the same in form but varies in amplitude and phase, confirming statement D as true. Ultimately, the correct answers are determined to be F, F, F, T.
fogvajarash
Messages
127
Reaction score
0

Homework Statement



Two identical simple pendulums of length 0.25m and period T, are mounted side-by-side. One is released from rest with an initial angular displacement of \displaystyle\frac{\pi}{12}rad, and the other is started with an initial angular velocity of 0.1 rad/s at θ=0. They are both started in motion simultaneously. Which are true or false?

A. After a time of T, they have both reversed their initial angular velocities.
B. They both have the same phase.
C. After 0.1s they both have the same phase.
D. The equation of motion for both oscillators reads: x=A\cos(\omega t+\delta)

Homework Equations



-

The Attempt at a Solution



I understand that the first pendulum should not have any phase as the initial displacement would be already the amplitude of the oscillation of the pendulum (thus wouldn't B and D be false?). On the other hand, after a time of T, they would both have the same velocities (what does reversed mean in this context?). I found that T = 1.00s. I'm not so sure on how C works (what is the exact definition of "phase"? Does it refer to the initial conditions or the angle at a time t?)
 
Last edited:
Physics news on Phys.org
The "phase" is the therm in the parenthesis (in the equation given in part D).
Phase = ω t + δ. So the phase is a function of time.

The initial phase is the phase at t=0 so it will be δ in the above equation. The initial phase is a constant, for a given system.

Then the first pendulum has an initial phase of zero, assuming that the equation in D is used.
 
nasu said:
The "phase" is the therm in the parenthesis (in the equation given in part D).
Phase = ω t + δ. So the phase is a function of time.

The initial phase is the phase at t=0 so it will be δ in the above equation. The initial phase is a constant, for a given system.

Then the first pendulum has an initial phase of zero, assuming that the equation in D is used.
So then δ=\displaystyle\frac{\pi}{2} or is it 0? Then shouldn't the second pendulum as well have an initial phase of zero as it starts from an angle 0? Or do we have to consider the initial velocity as well? I have that:

0.1=-Aω\sin(wt+\phi) (then this would mean that the initial phase is not zero?)

I'm completely lost right now.
 
OK, so assume we use the equation with cosine, as in part D.
Then at t=0, the first pendulum has displacement x=A and the second has x=0. (the displacement is measured from equilibrium position).
Put t=0 in the equation x=Acos(ωt+δ) and calculate δ so that you have x=A for the first pendulum and x=0 for the second pendulum.

No need to use the equation for speed here.
 
nasu said:
OK, so assume we use the equation with cosine, as in part D.
Then at t=0, the first pendulum has displacement x=A and the second has x=0. (the displacement is measured from equilibrium position).
Put t=0 in the equation x=Acos(ωt+δ) and calculate δ so that you have x=A for the first pendulum and x=0 for the second pendulum.

No need to use the equation for speed here.
So i found the phase of the second pendulum is -\displaystyle\frac{\pi}{2}rad. Then they would not have the same phase after 0.1 seconds, and they would not have the same initial phase. After a time T, they would have reverted to their initial angular velocities (so I'm not sure what they mean with prompt A). On the other hand, we would have that the equation of motion reads x=A\cos(\omega t+\delta) (for the exception that the amplitude of both oscilators is different, and the phase is different as well). I tried with putting all of them false, but that is not the case. I as well tried with T F F F and F F T T. Now I'm thinking that maybe it could be T F F T. Is my reasoning correct? The question is kind of vague.
 
In think that the last one is true. O course they may have different values for A and δ but the equation is the same.

A says that the their velocities will be reversed not that they revert to initial velocities.
And this is not true. They will have the same velocities as in the beginning, after T.
 
nasu said:
In think that the last one is true. O course they may have different values for A and δ but the equation is the same.

A says that the their velocities will be reversed not that they revert to initial velocities.
And this is not true. They will have the same velocities as in the beginning, after T.
You were right, I got it with F F F T. Thank you very much for your patience!
 
fogvajarash said:
You were right, I got it with F F F T. Thank you very much for your patience!

Hmm... I have almost the same question yet when I got the correct answer, the last statement was false. (i.e. False: The equation of motion for both oscillators reads: x = Acos(ωt+δ) ) This is because although the motion of each oscillator separately is described by that equation, together they are not or something like that. Not too sure myself, guessed the answer via elimination.
 

Similar threads

Replies
14
Views
1K
Replies
9
Views
2K
Replies
16
Views
2K
Replies
16
Views
1K
Replies
15
Views
1K
Replies
27
Views
2K
Replies
2
Views
2K
Replies
32
Views
2K
Replies
4
Views
3K
Replies
1
Views
1K
Back
Top