Perturbation Theory: Finding Eigenfunctions and Energies

PeteSampras
Messages
43
Reaction score
2
In a text a exercice says that for the Hamiltonian

##H_0 = \frac{p^2}{2m}+V(x)## the eigenfunction and eigen energy are ##\phi_n, E_n##. If we add the perturbation ## \frac{\lambda}{m}p## ¿what is the new eigenfunction?

The solution is

## \frac{p^2}{2m} + \frac{\lambda}{m}p+V= \frac{(p+\lambda)^2}{2m}- \frac{\lambda^2}{2m}+V##

but, the solution says ##\psi= exp(-i x \lambda/ \hbar) \phi_n##

I understand that ##H_0 \phi_n = E \phi_n## but,

¿why the solution ##\psi## has it form?,
 
Physics news on Phys.org
Welcome to PF;

why [does] the solution, ψ, ha[ve] [that] form?
Perhaps because that is how the maths comes out?
Did you go through the calculation? Did you come up with anything else?
 
The form of the new psai is a phase factor mutiplied by the previous eigenfunction. You can to some extent anticipate this answer form because the moment p has undergone a certain 'shift' by lamda.
 
To solve this, I first used the units to work out that a= m* a/m, i.e. t=z/λ. This would allow you to determine the time duration within an interval section by section and then add this to the previous ones to obtain the age of the respective layer. However, this would require a constant thickness per year for each interval. However, since this is most likely not the case, my next consideration was that the age must be the integral of a 1/λ(z) function, which I cannot model.
Back
Top