Phase Difference of Current & Voltage: Capacitors, Inductors & Complex Numbers

Click For Summary

Discussion Overview

The discussion centers around the phase difference between current and voltage in capacitors and inductors, particularly in the context of alternating current (AC) circuits. Participants explore the role of complex numbers in describing these relationships, as well as the effects of resistance on phase shifts.

Discussion Character

  • Technical explanation, Debate/contested, Conceptual clarification

Main Points Raised

  • Some participants explain that complex numbers are used for mathematical convenience in AC circuit theory, allowing easier manipulation of exponential functions compared to trigonometric functions.
  • It is noted that the phase shift between current and voltage in a capacitor is typically 90 degrees, as described by the relationship \(i = C \frac{dv}{dt}\).
  • Others argue that the presence of resistance in a circuit introduces a phase shift, and without resistance, the current could be in phase with the voltage.
  • One participant suggests that the phase shift is dependent on the finite resistances in the circuit, indicating that with zero source resistance, the current would be in phase with the voltage.
  • There is a correction regarding the treatment of the phase shift, with a participant noting a typographical error in the calculation of the modulus related to the phase shift.
  • Some participants express uncertainty about the prerequisites for understanding the discussion, mentioning the need for knowledge of calculus and complex numbers.

Areas of Agreement / Disagreement

There is no consensus on the conditions under which the phase difference occurs, with multiple competing views on the influence of resistance and the nature of the phase shift in ideal versus non-ideal circuits.

Contextual Notes

Participants reference the need for a solid understanding of calculus and complex numbers to fully grasp the concepts discussed, indicating that the treatment may not be suitable for all readers.

shivakumar
Messages
12
Reaction score
6
how does capacitors and inductors cause phase difference between current and voltage? how does complex number come into play to explain the relation between phase of current and voltage?
 
Physics news on Phys.org
Complex numbers come into the game only because of mathematical convenience. All the quantities in AC circuit theory are, of course, real. The reason to use complex numbers is that it is easier to deal with exponential functions than trigonometric functions, since we consider an AC with a single frequency ##f=\omega/(2 \pi)##. E.g., a voltage is described as ##U(t)=U_0 \cos(\omega t)##, which is a real quantity. Now you can also describe this as ##U(t)=\text{Re}[U_0 \exp(\mathrm{i} \omega t)]##.

To describe a circuit you have to use differential equations. E.g., take a capacitor and a resistor in series with a voltage source. Then Faraday's Law, integrated along the circuit tells you that
$$Q/C+R \dot{Q}=U(t),$$
where ##Q## is the momentary charge on the capacitor. To solve this equation it's more simple to use the complex description with the exponential function for the voltage. Since the ##C## and ##R## are real you get then from any complex solution for ##Q(t)## the corresponding real solution by taking the real part.

To solve the equation note that you need the complete solution of the homogeneous equation (i.e., setting the right side to ##0##), which is
$$Q_{\text{hom}}(t)=A \exp[-t/(RC)],$$
where ##A## is an arbitray integration constant, and one special solution of the inhomogeneous equation. This we get with the ansatz
$$Q_{\text{inh}}(t)=B \exp(\mathrm{i} \omega t),$$
because the right-hand side is of this form, and taking derivatives always reproduces this exponential function. So plugging the ansatz into the equation, you get
$$\exp(-\mathrm{i} \omega t) B (1/C + \mathrm{i} \omega R)=U_0 \exp(-\mathrm{i} \omega t),$$
and this gives
$$B=\frac{U_0}{1/C+\mathrm{i} \omega R} = \frac{U_0 C}{1+\mathrm{i} \omega R C} = \frac{U_0 C (1-\mathrm{i} \omega RC)}{1+\omega^2 R^2C^2}.$$
So the complete solution is the sum of the homogeneous and the inhomogeneous solution
$$Q(t)=\frac{U_0 C (1-\mathrm{i} \omega R C)}{1+\omega^2 R^2 C^2} \exp(\mathrm{i} \omega t) + A \exp[-t/(R C)].$$
As you see, the homogeneous part goes exponentially to zero for ##t \rightarrow \infty##, i.e., after a sufficiently long time only the inhomogeneous solution is relevant.

The current for this stationary state is given by
$$I(t)=\dot{Q}_{\text{inh}}(t)=\frac{U_0 C \omega (\omega R C+\mathrm{i})}{1+\omega^2 R^2 C^2} \exp(\mathrm{i} \omega t).$$
To get the phase shift between current and voltage you have to write the prefactor in "polar form". The modulus is [EDIT: corrected in view of #8]
$$\left | \frac{U_0 C \omega (\omega R C+\mathrm{i})}{1+\omega^2 R^2 C^2} \right|=\frac{U_0 \omega C}{\sqrt{1+\omega^2 R^2 C^2}},$$
and the argument
$$\varphi=\arccos \left (\frac{\omega RC}{\sqrt{1+\omega^2 R^2 C^2}} \right).$$
So we can write
$$I(t)=\frac{U_0 \omega C}{\sqrt{1+\omega^2 R^2 C^2}} \exp[\mathrm{i}(\omega t+\varphi)],$$
i.e., ##\varphi## is the phase shift. The physical quantity is the real part of this expression, i.e., just the same but instead of the exp function the cos function,
$$I(t)=\frac{U_0 \omega C}{\sqrt{1+\omega^2 R^2 C^2}} \cos(\omega t+\varphi).$$
 
Last edited:
  • Like
Likes   Reactions: TSny, cnh1995 and DaveE
shivakumar said:
how does capacitors and inductors cause phase difference between current and voltage?
It may be worth while pointing out that there is only a phase shift because of the finite resistances in a circuit. If you connect a capacitor across an AC voltage source (i.e. zero source resistance) the current flowing into the Capacitor will be totally in phase with the volts.
When a series R is added, there is a finite time lag between the supply voltage and the instantaneous charge in the capacitor.

Edit Warning - this is rubbish! My head was not screwed on right when I made this hurried post. It's the Charge on the C that's in step with the Volts.
 
Last edited:
  • Skeptical
Likes   Reactions: cnh1995 and DaveE
sophiecentaur said:
If you connect a capacitor across an AC voltage source (i.e. zero source resistance) the current flowing into the Capacitor will be totally in phase with the volts.
No. The capacitor current is shifted wrt the voltage by 90o because ##~i=C\frac{dv}{dt}~##.

The resistor does create a phase shift in the capacitor voltage wrt the source voltage. There is no phase shift without it because there is only one voltage; it is in phase with itself.
 
  • Like
Likes   Reactions: cnh1995 and tech99
The treatment from @vanhees71 above is excellent, and what you really need to fully understand this.

Since this thread is at the Basic level, I'm not sure that you can follow it without knowledge of basic calculus. Have you studied calculus yet? What about complex numbers, like polar and rectangular forms and Euler's formula? There are descriptions of this without calculus, but that's not how I learned it, and I suspect they aren't really accurate. Let us know if you need an explanation at that level.

Khan Academy has some really good free tutorials about AC circuits. I would check them out.

Then, definitely not Basic level, after you have studied EE/physics for a while you will learn about Laplace transforms. This is the tool EEs working in industry actually use because it makes the problem much simpler to calculate. This relies on the complex representation of impedance, voltages, and currents. But it's really the same thing as above.
 
  • Like
Likes   Reactions: vanhees71
DaveE said:
No. The capacitor current is shifted wrt the voltage by 90o because i=Cdvdt .
Whoops - you're right. q = Cv so differentiate both sides. . . . .
 
  • Like
Likes   Reactions: cnh1995
sophiecentaur said:
It may be worth while pointing out that there is only a phase shift because of the finite resistances in a circuit. If you connect a capacitor across an AC voltage source (i.e. zero source resistance) the current flowing into the Capacitor will be totally in phase with the volts.
When a series R is added, there is a finite time lag between the supply voltage and the instantaneous charge in the capacitor.
If you set ##R=0## in my treatment of the RC-series circuit you get ##\varphi=\pi/2##, i.e., the current is by 90 degrees advanced compared to the voltage (in the stationary state of course).
 
  • Like
Likes   Reactions: sophiecentaur
This is a very nice treatment by @vanhees71.

I did notice a small typographical error here.
vanhees71 said:
To get the phase shift between current and voltage you have to write the prefactor in "polar form". The modulus is
$$\left | \frac{U_0 C \omega (\omega R C+\mathrm{i})}{1+\omega^2 R^2 C^2} \right|=\frac{U_0 \omega C}{1+\omega^2 R^2 C^2},$$
The denominator on the right side should be under a square root.
 
  • Like
Likes   Reactions: vanhees71
Thanks for finding the typo. I've corrected it (also in the following equations).
 

Similar threads

  • · Replies 16 ·
Replies
16
Views
1K
  • · Replies 25 ·
Replies
25
Views
2K
Replies
152
Views
7K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 33 ·
2
Replies
33
Views
7K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K