Fizzicist
- 53
- 0
Homework Statement
A photon scatters in the backward direction (\theta= 180) from a free proton that is initially at rest.
What must the wavelength of the incident photon be if it is to undergo a 10.0% change in wavelength as a result of the scattering?
Homework Equations
\lambda'-\lambda = (h/mc)(1-cos(\theta))
where the left side is the difference between scattered and incidence wavelengths.
The Attempt at a Solution
This seemed like a pretty straightforward problem. Since the photon undergoes a 10% change in wavelength, 1.1\lambda = \lambda'. Therefore .1\lambda = (h/mc)(1-cos(\theta)). Multiply by 10 and evaluate the cosine, and you get \lambda = 20h/mc. However, when I substitute values into this and evaluate it I get the wrong answer. I have absolutely no clue what I am doing wrong here. This shouldn't be a difficult problem, but for some reason I am not getting the correct answer. Help would be appreciated. Thanks.