I Planck had 2 definitions of energy in 1900, how?

Cool4Kat
Messages
45
Reaction score
13
TL;DR Summary
Planck's 1900 paper appears to have two equations for the energy, hf, and hf/(e^(hf/kT)-1), how does that work?
So, I was looking into Einstein's 1907 paper where he derived the specific heat of solids using quantum mechanics and I found that Einstein just took the derivative of Planck's equation from 1900 for the average energy, U, as a function of time (and multiplied it by 3N for the three dimensions). Anyway, that makes sense for Einstein but then I got very confused about Planck in 1900.

This is the same paper that Planck said that light was created in little energy elements with energy equal to hf. So, how can the average energy = hf/(e^(hf/kT)-1)? I feel like that means that the energy has two definitions. I feel like I am missing something basic, what is it?

Thank you so much!
 

Attachments

  • Screen Shot 2019-06-22 at 11.53.21 PM.png
    Screen Shot 2019-06-22 at 11.53.21 PM.png
    21.8 KB · Views: 259
Physics news on Phys.org
Cool4Kat said:
Summary: Planck's 1900 paper appears to have two equations for the energy, hf, and hf/(e^(hf/kT)-1), how does that work?

In Planck's proposal, there are many energy levels - the difference between each neighbouring pair of levels if hf.

When things are in equilibrium at temperature T, the probability with which the different energy levels are occupied is such that the average energy is hf/(e^(hf/kT)-1).

The derivation is given in http://galileo.phys.virginia.edu/classes/252/PlanckStory.htm.
 
  • Like
Likes dlgoff
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top