yungman
- 5,741
- 294
For retarded scalar potential of arbigtrary source around origin:
V(\vec r, t) = \frac 1 {4\pi\epsilon_0}\int \frac { \rho(\vec r\;',t-\frac {\eta}{c}) }{\eta} d\;\tau' \;\hbox { where }\;\eta =\sqrt{r^2 + r'^2 - 2 \vec r \cdot \vec r\;' }
Where \;\vec r \; point to the field point where V is measured. And \;\vec r\;' \; points to the source point.
For \;\vec r\;' \; << \;\vec r \;:
\eta \approx \; r- \hat r \cdot \vec r\;' \Rightarrow \rho(\vec r\;',\;t-\frac {\eta}{c}) \approx \rho (\vec r\;',\;t-\frac {r}{c} + \frac {\vec r \cdot \vec r\;'}{c})
This next step is where I don't understand how the book do the Taylor expansion. I am going to type the exact word from the book:
Expanding \rho \; as a Taylor series in t about the retarded time at the origin,
t_0=t-\frac r c
We have
\rho(\vec r\;',\;t-\frac {\eta}{c}) \approx \rho (\vec r\;',\; t_0) + \dot{\rho} (\vec r\;',\; t_0)\left ( \frac {\vec r \cdot \vec r\;'}{c}\right ) + \frac 1 {2!} \ddot{\rho} \left ( \frac {\vec r \cdot \vec r\;'}{c}\right )^2 + \frac 1 {3!} \rho^{...}_{ } \left ( \frac {\vec r \cdot \vec r\;'}{c}\right )^3 ...
Why are they use \left ( \frac {\vec r \cdot \vec r\;'}{c}\right )\; as x for the expansion. I just don't follow this. Please help.
thanks
Alan
V(\vec r, t) = \frac 1 {4\pi\epsilon_0}\int \frac { \rho(\vec r\;',t-\frac {\eta}{c}) }{\eta} d\;\tau' \;\hbox { where }\;\eta =\sqrt{r^2 + r'^2 - 2 \vec r \cdot \vec r\;' }
Where \;\vec r \; point to the field point where V is measured. And \;\vec r\;' \; points to the source point.
For \;\vec r\;' \; << \;\vec r \;:
\eta \approx \; r- \hat r \cdot \vec r\;' \Rightarrow \rho(\vec r\;',\;t-\frac {\eta}{c}) \approx \rho (\vec r\;',\;t-\frac {r}{c} + \frac {\vec r \cdot \vec r\;'}{c})
This next step is where I don't understand how the book do the Taylor expansion. I am going to type the exact word from the book:
Expanding \rho \; as a Taylor series in t about the retarded time at the origin,
t_0=t-\frac r c
We have
\rho(\vec r\;',\;t-\frac {\eta}{c}) \approx \rho (\vec r\;',\; t_0) + \dot{\rho} (\vec r\;',\; t_0)\left ( \frac {\vec r \cdot \vec r\;'}{c}\right ) + \frac 1 {2!} \ddot{\rho} \left ( \frac {\vec r \cdot \vec r\;'}{c}\right )^2 + \frac 1 {3!} \rho^{...}_{ } \left ( \frac {\vec r \cdot \vec r\;'}{c}\right )^3 ...
Why are they use \left ( \frac {\vec r \cdot \vec r\;'}{c}\right )\; as x for the expansion. I just don't follow this. Please help.
thanks
Alan