Please explain the solution (Real Analysis)

phillyolly
Messages
157
Reaction score
0
 

Attachments

  • pic.jpg
    pic.jpg
    60.2 KB · Views: 460
Physics news on Phys.org
What parts do you get? What parts are you having trouble with?
 
My understanding shuts down in the second paragraph, second sentence.
 
Do you understand why \textbf{N}^k is countable?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Replies
21
Views
937
Replies
17
Views
3K
Replies
1
Views
2K
Replies
5
Views
2K
Replies
4
Views
1K
Replies
2
Views
2K
Replies
5
Views
2K
Back
Top