Drakkith said:
I see something about a diffraction grating in your picture. Could you give us a bit more info on what the picture is trying to explain?
MN represents the section of a plane transmission grating. AB,
CD, EF … are the successive slits of equal width a and BC, DE … be
the rulings of equal width b.Let e = a + b.
Let a plane wave front of monochromatic light of wave length λ be
incident normally on the grating. According to Huygen’s principle, the
points in the slit AB, CD … etc act as a source of secondary wavelets
which spread in all directions on the other side of the grating.
Let us consider the secondary diffracted wavelets, which makes
an angle θ with the normal to the grating.
The path difference between the wavelets from one pair of
corresponding points A and C is CG = (a + b) sin θ. It will be seen that
the path difference between waves from any pair of corresponding
points is also (a + b) sin θ
The point P1 will be bright, when
(a + b) sin θ = m λ where m = 0, 1, 2, 3
In the undiffracted position θ = 0 and hence sin θ = 0.