Please somebody help me with this problem

  • Thread starter Thread starter angina1
  • Start date Start date
AI Thread Summary
To solve the problem of a 100kg mover pushing a 220kg refrigerator with a force of 500N, a free-body diagram should illustrate the forces acting on the refrigerator, including its weight and the normal force. The horizontal forces consist of the applied force from the mover and the maximum static friction force opposing it. The equation for maximum static friction is given by F_friction = us * N, where N is the normal force equal to the weight of the refrigerator. To prevent movement, the static coefficient of friction (us) must be calculated based on the applied force and the weight of the refrigerator. Understanding these forces is crucial for determining the necessary friction to keep the refrigerator stationary.
angina1
Messages
11
Reaction score
0
I am looking for help to solve this problem A 100kg mover is trying to push a 220kg refrigerator with a force F=500N at 0 degrees. Draw or describe free-body diagram showing all the forces acting on the refrigerator and calculate the minimum static coefficient of friction us between the refrigerator and the floor that is necessary for the refrigerator to resist any movement.

I know that the forces acting in the vertical direction is a normal force and the weight of the refrigerator but I am confused about the forces acting in the horizontal direction
 
Physics news on Phys.org
The mover is exerting the horizontal force on the refrigerator. They don't tell you what kind of shoes the mover has (what their coefficient of friction is), so assume that the mover is somehow braced against something. Besides, at only 100kg compared to the 220kg refigerator, the mover had better have something to brace against, or else they need to put something slippery (or dowels) under the 'fridge.

What is the equation for the maximum horizontal static friction force that the 220kg object can generate, given its mass and coefficient of static friction?
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top