Please tell me where I am going wrong in this integral

  • Thread starter Thread starter bluepilotg-2_07
  • Start date Start date
bluepilotg-2_07
Messages
11
Reaction score
2
Homework Statement
Given the wavefunction, determine the expectation value of the particle's position
Relevant Equations
##\Psi=\frac{1}{\sqrt{\pi}(b)^{1/4}}\exp(\frac{ip_0x}{\hbar}-\frac{(x-x_0)^2}{2b^2})##
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).##
##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).##
##y=x-x_0 \quad x=y+x_0 \quad dy=dx.##
The boundaries remain infinite, I believe.
##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).##
##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).##
I then resolved the two integrals separately using the relations for Gaussian integrals in the back cover of Introduction to Quantum Mechanics by Griffiths.
##\frac{b}{\sqrt{\pi}}+x_0.##
This is not correct. The result should be ##x_0##. I have retraced my steps multiple times and have redone the calculation using a different substitution but get the same result. Would appreciate someone pointing out the problem.
 
Physics news on Phys.org
bluepilotg-2_07 said:
1758594371322.webp
In the second line, the first integral has an integrand that is odd in ##y##. You cannot replace ##\int_{-\infty}^{\infty}## by ##2\int_{0}^{\infty} ##.
 
Hello, thank you for the response! I should have known better, but wasn't considering even and oddness. I realize now that the first integral goes to zero since it is odd and being integrated over symmetric boundaries and the rest is trivial.
Thanks again!
 
  • Like
Likes berkeman and TSny
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top