Solving Poisson Distribution Homework: Find f(y)

superwolf
Messages
179
Reaction score
0

Homework Statement



In a Poisson process with intensity λ, let X1 be the time until the first event and let X2 be the time between the first and the second event. Let Y be the time until the second event, that is, Y = X1 + X2. Find the density function f(y).

2. The attempt at a solution

Probability that no events occur in time y:

<br /> p(0; \lambda X1) = e^{- \lambda t}<br />

I don't know if this will be helpful at all...
 
Physics news on Phys.org
I'll give you a hint, the holding times (time between two jumps) of a Poisson process are independent and exponential with parameter lambda. You may want to prove this.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top