Poisson Ratio -- Finding a corresponding analytical solution for the strain

AI Thread Summary
The discussion revolves around the challenges of calculating the Poisson ratio in a finite element (FE) simulation of a 2D block under prescribed displacement. The user observes a discrepancy between the expected and actual values of strain_xx, leading to confusion regarding the analytical solution. Key insights reveal that in a plane strain condition, the relationship between strains is influenced by the Poisson ratio, with strain_xx being derived from strain_yy using specific equations. The conversation clarifies that the correct formulation accounts for the constraints and material properties, ultimately guiding the user toward the accurate analytical approach. The exchange emphasizes the importance of understanding the underlying mechanics of strain relationships in material behavior.
Br--1995
Messages
3
Reaction score
0
TL;DR Summary
Find a corresponding analytical solution for the strain in the x-direction caused by the poisson ratio.
Hi, I ran into problems using the poisson ratio.
For a FE simulation I created a simple 2D 1mm x 1mm block, and prescribed a 0.1 mm displacement at the top edge.
Furthermore, the bottom edge is constraint in the y-dir, and the left edge in the x-dir.
The material parameters are E = 100, and v (poisson ratio) = 0.3.
Note the simulation is executed for a plane strain assumption!

To verify the results I would like to solve the analytical solution for this problem.
This is quite simple tbh, I use the 2D strain-stress relations for the plane strain problem.
However, the simulation shows that the strain_yy = -0.1 (as expected) but the strain_xx = 0.04285714.

I really cannot figure out the analytical solution for the strain_xx, I would expect this to be 0.03 (strain_xx = -v * strain_yy).

I know that the 0.0428.. value should be the correct one, because I tried the simulation in different simulation software.
Hopefully someone can explain me how to get this value analytically?

Thanks in advance!

Situation_sketch.PNG Displacement_x.PNG Strain_xx.PNG
 
Last edited by a moderator:
Engineering news on Phys.org
Just by looking at the numbers: strain_xx = -v * strain_yy / (1-v) = 0.0485714...
 
  • Like
Likes Br--1995
In the plain strain situation, the strain in the 3rd direction is zero. This results in a larger strain in the transverse direction. Try the calculation with plain stress and see what you get. For plain strain, you get $$\epsilon_y=-\frac{\nu}{(1-\nu)}\epsilon_x=-0.04286$$
 
Last edited:
  • Like
Likes Br--1995
Chestermiller said:
In the plain strain situation, the strain in the 3rd direction is zero. This results in a larger strain in the transverse direction. Try the calculation with plain stress and see what you get. For plain strain, you get $$\epsilon_y=-\frac{\nu}{(1-\nu)}\epsilon_x=-0.04286$$
Thank you very much for your answer, that's the relation I was looking for. (Note, there is a small typo: $$\epsilon_x$$ and $$\epsilon_y$$ should be the other way around)

To make the story complete, I expect this relation is derived by:
$$\sigma_x = \frac{E}{(1+\nu)(1-2\nu)} [(1-\nu) \epsilon_x + \nu \epsilon_y]$$

Because the block is not constraint in the right x-dir, it can expand freely -> conclusion: $$\sigma_x = 0$$
Therefore, we can write the previous eq. for the strain in the x-dir as :
$$\epsilon_x = -\frac{\nu}{1-\nu} \epsilon_y $$

Correct me if I am wrong.
 
Br--1995 said:
Thank you very much for your answer, that's the relation I was looking for. (Note, there is a small typo: $$\epsilon_x$$ and $$\epsilon_y$$ should be the other way around)

To make the story complete, I expect this relation is derived by:
$$\sigma_x = \frac{E}{(1+\nu)(1-2\nu)} [(1-\nu) \epsilon_x + \nu \epsilon_y]$$

Because the block is not constraint in the right x-dir, it can expand freely -> conclusion: $$\sigma_x = 0$$
Therefore, we can write the previous eq. for the strain in the x-dir as :
$$\epsilon_x = -\frac{\nu}{1-\nu} \epsilon_y $$

Correct me if I am wrong.
That's not exactly the way I did it, but it is correct. I hope you also noticed that ##\sigma_y## is not equal to ##E\epsilon_y##, but rather $$\frac{E\epsilon_y}{(1-\nu^2)}$$
 
  • Like
Likes Br--1995
Chestermiller said:
That's not exactly the way I did it, but it is correct. I hope you also noticed that ##\sigma_y## is not equal to ##E\epsilon_y##, but rather $$\frac{E\epsilon_y}{(1-\nu^2)}$$
Thank you for your help! Yes I've noticed this.
 
How did you find PF?: Via Google search Hi, I have a vessel I 3D printed to investigate single bubble rise. The vessel has a 4 mm gap separated by acrylic panels. This is essentially my viewing chamber where I can record the bubble motion. The vessel is open to atmosphere. The bubble generation mechanism is composed of a syringe pump and glass capillary tube (Internal Diameter of 0.45 mm). I connect a 1/4” air line hose from the syringe to the capillary The bubble is formed at the tip...
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
I'd like to create a thread with links to 3-D Printer resources, including printers and software package suggestions. My motivations are selfish, as I have a 3-D printed project that I'm working on, and I'd like to buy a simple printer and use low cost software to make the first prototype. There are some previous threads about 3-D printing like this: https://www.physicsforums.com/threads/are-3d-printers-easy-to-use-yet.917489/ but none that address the overall topic (unless I've missed...
Back
Top