Polynomial Divided by (x-1)(x-2): Remainder & Why

  • Thread starter Thread starter Xalos
  • Start date Start date
  • Tags Tags
    Polynomial
AI Thread Summary
When dividing a polynomial P(x) by (x-1) and (x-2), the remainders are 2 and 3, respectively. This implies that P(x) must be quadratic, as the degree of the remainder must be lower than that of the divisor. By setting up equations based on the remainders, it can be determined that the polynomial can be expressed in terms of coefficients a, b, and c. The critical division reveals that despite initial assumptions about the polynomial's form, the consistent remainders indicate a specific relationship among the coefficients. Ultimately, the discussion highlights the importance of recognizing polynomial degree constraints in remainder problems.
Xalos
Messages
9
Reaction score
0
Suppose a polynomial is divided by (x-1) and remainder=2 and when the same polynomial is divided by (x-2), remainder is 3. What is the remainder when the polynomial is divided by (x-1)(x-2)? Why?
 
Mathematics news on Phys.org
This may seem vague, but a remainder may either be a constant, or the degree in the numerator is lower than the degree in the denominator.

You can start with:
P(x) = D(x)Q(x) + R(x),
where P(x) is your polynomial and your dividend, D(x) is your divisor which might be a binomial or trinomial, Q(x) is the quotient, and R(x) is the remainder.

I worked your problem and it should not be too complicated. You should understand something about using synthetic division to obtain points of the polynomial. If you divide using synthetic division and you obtain a nonzero remainder, then the divisor number and the remainder will give you a point on the polynomial. If the root used is a and the remainder is b, then a point on the polynomial is (a, b).
 
Xalos said:
Suppose a polynomial is divided by (x-1) and remainder=2 and when the same polynomial is divided by (x-2), remainder is 3. What is the remainder when the polynomial is divided by (x-1)(x-2)? Why?

You know three things:

Since the polynomial, P(x), divided by x-1, has a numeric remainder, it must be quadratic, of the form ax2+ bx+ c.

Since the remainder, when divided by x-1, is 2, P(1)= a+ b+ c= 2.

Since the remainder, when divided by x-2, is 3, P(2)= 4a+ 2b+ c= 3.

Subtracting the first equation from the second gives 3a+ b= 1 so b= 1- 3a. Putting that into the first equation, a+ 1- 3a+ c= 2 or -2a+ c= 1 so c= 1+ 2a.

Now, divide ax2+ (1-3a)x+ 1+ 2a by (x-1)(x-2)= x2+ 3x+ 2.
 
Thanx! It didn't occur to me that p(x) couldn't be anything other than quadratic.
 
Actually, I wrote out a long response arguing that this was a bad problem because there were too many possibilities and the couldn't all give the same remainder.

Until I did the critical division at the end and found out they did!
 
HallsofIvy said:
Actually, I wrote out a long response arguing that this was a bad problem because there were too many possibilities and the couldn't all give the same remainder.

Until I did the critical division at the end and found out they did!

You could show us what you were writing anyway. The reason I might like to read it is that I did not make any assumptions about the initial unknown polynomial, and then I found a non-polynomial result (a binomial, in fact). I would try to be clear about what assumption I did make that I should not have made; or what assumption I should have made that I did not. My result was that P(x)= ( x+1). Not a bad result but it is not a polynomial. The division process lead only to a remainder, and no other coefficients. Should I have understood that I must expect at least a quadratic degree polynomial?
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top