Possible title: What Are the Limits of Xn=(n)^((-1)^n)?

  • Thread starter Thread starter transgalactic
  • Start date Start date
  • Tags Tags
    Partial
transgalactic
Messages
1,386
Reaction score
0
find
lim sup Xn
and
lim inf Xn
of
Xn=(n)^((-1)^n)

??
 
Physics news on Phys.org
Partial boundary?

Write out some terms to try to get to the limits, or at least to understand \{x_n\}.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top