Potential and field of a thing circular ring

richyw
Messages
179
Reaction score
0

Homework Statement



I'm trying to work through an example in my classical mechanics textbook (Fowles and Cassiday, 7th ed, example 6.7.2. The problem I am having is when he expands the integrand into a power series. I'll write out the first part of the solution. The question is "find the potential function and the gravitational field intensity in the plane of a thin circular ring

Homework Equations




\Phi=-G\int\frac{dM}{s}

The Attempt at a Solution



\Phi=-G\int\frac{dM}{s}=-G\int^{2\pi}_0\frac{\mu R d\theta}{s}where \mu is the linear mass density of the ring,R is the radius of the ring and M is the mass of the ring. Then using the law of
cosines we have\Phi=-2R\mu G\int^{\pi}_0\frac{d\theta}{\sqrt{r^2+R^2-2Rr\cos\theta}}\Phi=-\frac{2R\mu G}{r}\int^{\pi}_0\frac{d\theta}{\sqrt{1+(R/r)^2-2(R/r)\cos\theta}}The next part is where I am getting stuck. It says to expand in a power series of x=R/r \Phi=-2x \mu G\int^{\pi}_0\left[\left( 1-\frac{1}{2}x^2+x\cos\theta\right)+\frac{3}{8}\left(x^2-2x\cos\theta\right)^2+\dots\right]d\thetaWhat is happening in this step? Sorry if this belongs in intro physics. It's a junior year course though.
 
Physics news on Phys.org
oh my goodness. thank you.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top