Potential energy of a continous charge distribution

asdf60
Messages
81
Reaction score
0
How exactly does one find the potential energy of a charge distribution? More precisely, how does one get over the 1/r term in the integral goes crazy near r=0? Purcell says it is possible, but I'm not seeing how for an continuous distribution this is possible.

Consider for a line of length L with linear charge density p. Let's start just by finding the potential at on end of the line. It should be integral from 0 to L of (p*dx / x). Needless to say, the integral doesn't exist. What am I doing wrong?
 
Physics news on Phys.org
The line has to have finite cross-section, otherwise the integral blows up. Moreover, you can only assign a potential to objects of finite charge and dimensions.
 
what about for something like a conducting volume, where the charge is distributed over the surface (and hence density is in terms of area not volume)?
 
Last edited:
Again, the surface has to have finite thickness. If you have some charge distribution spread over some region in space, then that region must have finite dimensions, or else you'll get places with infinite charge density (charge to volume ratio), and the integral over such 'singularities' will blow up.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top