rocomath
- 1,752
- 1
[SOLVED] Power series representation, I really need help! :-]
please let me know if i did this correctly
f(x)=\arctan{(\frac{x}{3})}
f'(x)=\frac{\frac{1}{3}}{1-(-\frac{x^2}{3^2})}
\frac{1}{3}\int[\sum_{n=0}^{\infty}\frac{(-1)^{n}x^{2n}}{3^{2n}}]dx
\frac{1}{3}\int[1-(\frac{x}{3})^{2}+(\frac{x}{3})^{4}-(\frac{x}{3})^{6}+(\frac{x}{3})^{8}+...]dx
\frac{1}{3}[C+x-\frac{(\frac{x}{3})^{3}}{3}+\frac{(\frac{x}{3})^{5}}{5}-\frac{(\frac{x}{3})^{7}}{7}+\frac{(\frac{x}{3})^{9}}{9}]
C+\sum_{n=0}^{\infty}\frac{(-1)^{n}x^{2n+1}}{3^{2n+1}(2n+1)}
please let me know if i did this correctly
f(x)=\arctan{(\frac{x}{3})}
f'(x)=\frac{\frac{1}{3}}{1-(-\frac{x^2}{3^2})}
\frac{1}{3}\int[\sum_{n=0}^{\infty}\frac{(-1)^{n}x^{2n}}{3^{2n}}]dx
\frac{1}{3}\int[1-(\frac{x}{3})^{2}+(\frac{x}{3})^{4}-(\frac{x}{3})^{6}+(\frac{x}{3})^{8}+...]dx
\frac{1}{3}[C+x-\frac{(\frac{x}{3})^{3}}{3}+\frac{(\frac{x}{3})^{5}}{5}-\frac{(\frac{x}{3})^{7}}{7}+\frac{(\frac{x}{3})^{9}}{9}]
C+\sum_{n=0}^{\infty}\frac{(-1)^{n}x^{2n+1}}{3^{2n+1}(2n+1)}
Last edited: