I Predicting Motion of a Swing on a Non-Horizontal Branch

AI Thread Summary
The discussion focuses on predicting the motion of a swing suspended from a non-horizontal branch, emphasizing that sufficient information is needed to specify the problem completely. Key factors include the positions of points C and D, the nature of the initial kick, and the mass distribution of the swing. The swing's motion can be analyzed using conservation of energy principles, with specific angles defined for the ropes relative to the coordinate axes. The initial kick is crucial as it determines the swing's starting position and energy. Overall, the approach appears to be on the right track for predicting the swing's motion.
{~}
Messages
63
Reaction score
0
TL;DR Summary
Do you understand swings?
swing.png


A swing is suspended from a non-horizontal tree branch. Points C and D are fixed in space. All 4 line segments in the diagram have constant distance. After some initial "kick" imparts energy to the system the only force acting externally on the system is gravity.

Is it possible to predict the motion of the swing?
 
Physics news on Phys.org
Yes, if we have enough information to completely specify the problem. What are the four points and what is attached between them? Where is the “initial kick” applied and what force is it, applied for how long? How is the mass of the swing distributed?
 
AB is the seat. AC and BD are the ropes. CD is the branch. I assume the system remains under tension. The initial kick could be positioning the swing away from the minimum energy position then releasing. Mass is centered on the swing seat with some non zero moment of inertia.
 
I define ##\theta## to be the angle a rope makes relative to z and ##\phi## is the angle relative to x. The branch is in the xz plane. From conservation of energy I got
$$ \frac{r_A^2}{2} \left[\left(\frac{\partial\theta_A}{\partial t}\right)^2 + \left(\frac{\partial\phi_A}{\partial t}\right)^2\right]+ \frac{r_B^2}{2}\left[\left(\frac{\partial\theta_B}{\partial t}\right)^2 + \left(\frac{\partial\phi_B}{\partial t}\right)^2\right] - r_A\cos \theta_A - r_B\cos\theta_B = 0$$
Am I on the right track?
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Back
Top