Presentation of a group to generators in A(S)

TylerH
Messages
729
Reaction score
0
Is there a general algorithm for taking the presentation of a group and get the permutation generators for the subgroup of A(S) to which the group is isomorphic?

For example, given x^5=y^4=e, xy=f(c^2) how do I find (12345) and (1243), the permutations corresponding to x and y? BTW, the example is the Frobenious group of order 20, but I'm asking about a general method.
 
Physics news on Phys.org
I think the usual method is the Todd-Coxeter algorithm. It's covered quite extensively in Artin's Algebra.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...

Similar threads

Replies
13
Views
567
Replies
1
Views
2K
Replies
2
Views
2K
Replies
3
Views
433
Replies
1
Views
2K
Replies
2
Views
6K
Replies
9
Views
2K
Replies
18
Views
16K
Back
Top