Pressure decay as a function of time

AI Thread Summary
The discussion centers on modeling the pressure decay in a leaking pressurized cylinder filled with an ideal gas. The proposed differential equation for pressure decay is dP/dt = -constant * SQRT(P), suggesting a slower decay than expected. Participants debate the relationship between density and pressure, with one arguing that density should be a function of time due to the changing number of molecules in the cylinder. However, it is clarified that the leak rate diminishes as the pressure differential decreases, preventing the density of the leaking gas from exceeding that inside the cylinder. The original poster seeks validation or correction of their analysis and the solution for P(t).
hodgmojo
Messages
4
Reaction score
0
Problem: Model a leaking pressurized cylinder volume filled with an ideal gas (density ρ and molecular weight w) charged to a pressure P at temperature T. The rigid cylinder of fixed volume V has a small leak (adiabatic – T doesn’t change significantly) of area a. The leak rate will diminish with time since as material escapes, the driving pressure decreases. What function describes the pressure decay as a function of time, t?


Solution: The model in the attached pdf uses the ideal gas law and Bernoulli flow equation to find that

dP/dt = -constant * SQRT(P)

I'm not sure what the solution to this is but see that it will decay more slowly than the exponential solution I expected to find.

Question: Is the above differential solution correct, and if so, what is P(t)? If it is incorrect, what is a correct approach?
 

Attachments

Physics news on Phys.org
In equation (7) in the attachment, you have sqrt(density) * sqrt(pressure)

Because density is proportional to pressure,
this factor is proportional to pressure, not sqrt(pressure).

I think this will now be a standard exponential decay.
 
Bob S said:
In equation (7) in the attachment, you have sqrt(density) * sqrt(pressure)

Because density is proportional to pressure,
this factor is proportional to pressure, not sqrt(pressure).

I think this will now be a standard exponential decay.

I don't think density is a function of pressure in context of this problem, but am open to understanding why you do.

The reason I don't think so is that density appears in eq 2 where Bernoulli's flow equation is applied: the left side of the equation where Pressure appears represents the stored (akin to potential) energy prior to the leak; the right side represents the kinetic energy of the molecules after they have been released. (Both sides of the equation are actually energy densities.) Therefore the (mass) density in eq 7 is of the molecules outside the cylinder and not a function of the pre-discharge pressure (where the mass density is very much a function of pressure).
 
If you have a rigid container of volume V with N molecules in it at t = 0, and you let L molecules out over a time t because of a slow leak, then there are only N-L molecules left in the container at time t. So the density of gas in the container has changed from N/V to (N-L)/V. If the density of the gas in the container is continuously dropping, shouldn't the density of the leaking gas also change? If the density of the leaking gas is always constant, at some time it will be higher than the density of gas in the container. This sounds illogical. So maybe the density in your attachment equation (2) should be a function of time.
 
Bob S said:
If you have a rigid container of volume V with N molecules in it at t = 0, and you let L molecules out over a time t because of a slow leak, then there are only N-L molecules left in the container at time t. So the density of gas in the container has changed from N/V to (N-L)/V. If the density of the gas in the container is continuously dropping, shouldn't the density of the leaking gas also change? If the density of the leaking gas is always constant, at some time it will be higher than the density of gas in the container. This sounds illogical. So maybe the density in your attachment equation (2) should be a function of time.

The statement "the density of the leaking gas is always constant, at some time it will be higher than the density of gas in the container" is not accurate; the leak will slow and stop before the density inside is less than it is outside. The leak is driven by the pressure differential and, except for diffusion, gas only leaks from the cylinder when the pressure in the cylinder is higher than the surrounding (and same for density). With time, the gauge pressure of the leaking cylinder, and thus the leak rate, approach zero. And if the volume around the leaking cylinder is much larger than the volume of the cylinder (let the outside volume go to infinity) then the leaked gas density never changes.

When Bernoulli's flow equation is applied to a leaking cylinder with the limit that the leak area is insignificantly small compared to the cross sectional area of the leaking cylinder, then the differential equation I published originally in this thread is obtained:

dP/dt = -constant*SQRT(P)

where P is the gauge pressure of the leaking cylinder. I’m still hoping for a validation or correction of the analysis presented in the original post (ref. pdf attachment). And if the solution above is valid, what is P(t)?
 
Hello everyone, Consider the problem in which a car is told to travel at 30 km/h for L kilometers and then at 60 km/h for another L kilometers. Next, you are asked to determine the average speed. My question is: although we know that the average speed in this case is the harmonic mean of the two speeds, is it also possible to state that the average speed over this 2L-kilometer stretch can be obtained as a weighted average of the two speeds? Best regards, DaTario
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Thread 'Beam on an inclined plane'
Hello! I have a question regarding a beam on an inclined plane. I was considering a beam resting on two supports attached to an inclined plane. I was almost sure that the lower support must be more loaded. My imagination about this problem is shown in the picture below. Here is how I wrote the condition of equilibrium forces: $$ \begin{cases} F_{g\parallel}=F_{t1}+F_{t2}, \\ F_{g\perp}=F_{r1}+F_{r2} \end{cases}. $$ On the other hand...
Back
Top