Principal value and integral of 1/z

  • Thread starter Thread starter wasia
  • Start date Start date
  • Tags Tags
    Integral Value
wasia
Messages
50
Reaction score
0
I am slightly confused about the definition of principle value. If we have an integral
\int 1/z,
where the integration from -\infty to \infty is implied, then by Cauchy integral theorem we know that the principle value
P \int 1/z=i\pi.

However, I would like to write down this principle value explicitly. My best shot is
\lim_{\epsilon\rightarrow0}\lim_{R\rightarrow\infty}\int_{-R}^{-\epsilon}1/z+\int_{\epsilon}^{R}1/z.

Assuming that this is correct (is it?) I can (can I?) calculate the integrals first and take limits afterwards. I get

\lim_{\epsilon\rightarrow0}\lim_{R\rightarrow\infty} \ln\left(-\frac{\epsilon}{\epsilon}\right) + \ln\left(-\frac{R}{R}\right)=2\ln(-1)=0.

Can you tell me what am I doing wrong?
 
Physics news on Phys.org
You need to think about how to define the function ln(z). There is no unique definition, precisely because of the path dependence of the integral of 1/z.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top