mottov2
- 13
- 0
There are 3 events A,B and C prove that
P(A\cupB\cupC) = P(A)+P(B)+P(C)-P(A\capB)-P(A\capC)-P(B\capC)+P(A\capB\capC)
each event is disjoint so by the additivity rule...
My attempt:
A\cupB\cupC = (A\capB\capC)\cup(A\cap[A\capB\capC]c)\cup([B\capC]\cap[A\capB\capC]c)\cup(C\capAc\cap([B\capC]\cap[A\capB\capC]c)c)\cup(B\capAc\cap([B\capC]\cap[A\capB\capC]c)c)
each event is disjoint so by the additivity rule...
P(A\cupB\cupC) = P(A\capB\capC)+P(A\cap[A\capB\capC]c)+P([B\capC]\cap[A\capB\capC]c)+P(C\capAc\cap([B\capC]\cap[A\capB\capC]c)c)+P(B\capAc\cap([B\capC]\cap[A\capB\capC]c)c)
P(A\cap(A\capB\capC)c) = P(A)-P(A\capB\capC)
P((B\capC)\cap(A\capB\capC)c) = P(B\capC)-P(A\capB\capC)
P(C\capAc\cap([B\capC]\cap[A\capB\capC]c)c) = P(C\cap(A\capC)c\cap([B\capC]\cap[A\capB\capC]c)c) = P(C)-P(A\capC)-P((B\capC)\cap(A\capB\capC)c) = P(C)-P(A\capC)-P(B\capC)+P(A\capB\capC)
P(B\capAc\cap([B\capC]\cap[A\capB\capC]c)c) = P(B\cap(A\capB)c\cap([B\capC]\cap[A\capB\capC]c)c) = P(B)-P(A\capB)-P((B\capC)\cap(A\capB\capC)c) = P(B)-P(A\capB)-P(B\capC)+P(A\capB\capC)
then by substitution...
P(A\cupB\cupC) = P(A\capB\capC)+P(A)-P(A\capB\capC)+P(B\capC)-P(A\capB\capC)+P(C)-P(A\capC)-P(B\capC)+P(A\capB\capC)+P(B)-P(A\capB)-P(B\capC)+P(A\capB\capC)
= P(A)+P(B)+P(C)-P(A\capC)-P(A\capB)-P(B\capC)+P(A\capB\capC)
did i do this right? I feel like i may have overcomplicated it..
P(A\cupB\cupC) = P(A)+P(B)+P(C)-P(A\capB)-P(A\capC)-P(B\capC)+P(A\capB\capC)
each event is disjoint so by the additivity rule...
My attempt:
A\cupB\cupC = (A\capB\capC)\cup(A\cap[A\capB\capC]c)\cup([B\capC]\cap[A\capB\capC]c)\cup(C\capAc\cap([B\capC]\cap[A\capB\capC]c)c)\cup(B\capAc\cap([B\capC]\cap[A\capB\capC]c)c)
each event is disjoint so by the additivity rule...
P(A\cupB\cupC) = P(A\capB\capC)+P(A\cap[A\capB\capC]c)+P([B\capC]\cap[A\capB\capC]c)+P(C\capAc\cap([B\capC]\cap[A\capB\capC]c)c)+P(B\capAc\cap([B\capC]\cap[A\capB\capC]c)c)
P(A\cap(A\capB\capC)c) = P(A)-P(A\capB\capC)
P((B\capC)\cap(A\capB\capC)c) = P(B\capC)-P(A\capB\capC)
P(C\capAc\cap([B\capC]\cap[A\capB\capC]c)c) = P(C\cap(A\capC)c\cap([B\capC]\cap[A\capB\capC]c)c) = P(C)-P(A\capC)-P((B\capC)\cap(A\capB\capC)c) = P(C)-P(A\capC)-P(B\capC)+P(A\capB\capC)
P(B\capAc\cap([B\capC]\cap[A\capB\capC]c)c) = P(B\cap(A\capB)c\cap([B\capC]\cap[A\capB\capC]c)c) = P(B)-P(A\capB)-P((B\capC)\cap(A\capB\capC)c) = P(B)-P(A\capB)-P(B\capC)+P(A\capB\capC)
then by substitution...
P(A\cupB\cupC) = P(A\capB\capC)+P(A)-P(A\capB\capC)+P(B\capC)-P(A\capB\capC)+P(C)-P(A\capC)-P(B\capC)+P(A\capB\capC)+P(B)-P(A\capB)-P(B\capC)+P(A\capB\capC)
= P(A)+P(B)+P(C)-P(A\capC)-P(A\capB)-P(B\capC)+P(A\capB\capC)
did i do this right? I feel like i may have overcomplicated it..
Last edited: