B Probability density of a normal distribution

TheCanadian
Messages
361
Reaction score
13
If the normalized probability density of the normal distribution is ## p(x) = \frac {1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} ##, then if ##\sigma = 0.0001## and in the special case ## x = \mu##, wouldn't the probability density at this point, ##p(\mu)##, exceed 1 since it is equal to ##p(\mu) = \frac {1}{\sqrt{2\pi}0.0001} > 1##? Wouldn't this mean it is not normalized?
 
Mathematics news on Phys.org
TheCanadian said:
If the normalized probability density of the normal distribution is ## p(x) = \frac {1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} ##, then if ##\sigma = 0.0001## and in the special case ## x = \mu##, wouldn't the probability density at this point, ##p(\mu)##, exceed 1 since it is equal to ##p(\mu) = \frac {1}{\sqrt{2\pi}0.0001} > 1##? Wouldn't this mean it is not normalized?
No. The density function can get huge as long as its integral is equal to 1. So the density function can get very large for a short range of X.
 
FactChecker said:
No. The density function can get huge as long as its integral is equal to 1. So the density function can get very large for a short range of X.

Okay, just wanted to ensure I understood that. Thank you. So in general, the value for ##p(x)## always varies from 0 to ##\frac{1}{\sqrt{2\pi}\sigma}##?
 
Yes.

Other probability distributions can have even higher densities - as long as they are in a small range. Only the integral is important.
 
  • Like
Likes FactChecker and TheCanadian
As an analogy, a 1 kg rock with a volume of 300 cc could have a density of 1.5 kg/ 300 cc at a particular location within the rock.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top