MHB Probability distribution of a RV is a function of another RV

AI Thread Summary
A random variable I has a countably infinite sample space with a probability distribution dependent on another set of independent and identically distributed random variables Xi, uniformly distributed in [0,1]. The probability distribution is defined mathematically, and the mean of I is expressed as a sum involving P(I=i) multiplied by i. Bincy questions whether the average can be calculated through multiple integrations and seeks simplification methods. Ultimately, it is confirmed that if the probability distribution of a random variable X is a function of another random variable Y, then X is also a function of Y, leading to the conclusion that the mean of I is N, based on geometric distribution principles.
bincy
Messages
38
Reaction score
0
Dear friends,

I have a Random Variable I. Sample space of I is from 1,2,3... inf(countably infinite). It's probability distribution P(I=i) is a function of another set of Random Variables Xi's, which are uniformly distributed in [0,1]. These Random variable are iid. I have to find out the mean of I. The mean of Xi's is 0.5 for every i.

I am giving the probability distribution of i below.

[math]P(I=i)=\left\{ \prod_{j=1}^{i-1}\left(1-\left(N*x_{j}*\left(1-x_{j}\right)^{N-1}\right)\right)\right\} N*x_{i}\left(1-x_{i}\right)^{N-1} [/math]

The average of I is [math]\sum_{i=1}^{inf}P(I=i)*i [/math]

Can anyone give any idea to solve this problem?regards,
Bincy

---------- Post added at 16:41 ---------- Previous post was at 15:13 ----------

[math] \int_{0}^{1}\int_{0}^{1}.....\int_{0}^{1}\left\{ \prod_{j=1}^{i-1}\left(1-\left(N*x_{j}*\left(1-x_{j}\right)^{N-1}\right)\right)\right\} N*x_{i}\left(1-x_{i}\right)^{N-1} *i [/math]

Is it the actual average? If so, how to simplify it? Here integration is infinite times.regards,
Bincy

---------- Post added at 17:44 ---------- Previous post was at 16:41 ----------

I would like to add one more general point and kindly seeking the confirmation from you.

That is,

If the prob distribution of a RV X is a fn of another RV Y, X itself would be a fn of Y.
 
Mathematics news on Phys.org
The answer(mean of I) is N since the probability of success in the 1st, 2nd, 3rd and so on is geometric with parameter 1/N. Ignore my 2nd and 3rd posts
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top