MHB Probability distribution of a RV is a function of another RV

Click For Summary
A random variable I has a countably infinite sample space with a probability distribution dependent on another set of independent and identically distributed random variables Xi, uniformly distributed in [0,1]. The probability distribution is defined mathematically, and the mean of I is expressed as a sum involving P(I=i) multiplied by i. Bincy questions whether the average can be calculated through multiple integrations and seeks simplification methods. Ultimately, it is confirmed that if the probability distribution of a random variable X is a function of another random variable Y, then X is also a function of Y, leading to the conclusion that the mean of I is N, based on geometric distribution principles.
bincy
Messages
38
Reaction score
0
Dear friends,

I have a Random Variable I. Sample space of I is from 1,2,3... inf(countably infinite). It's probability distribution P(I=i) is a function of another set of Random Variables Xi's, which are uniformly distributed in [0,1]. These Random variable are iid. I have to find out the mean of I. The mean of Xi's is 0.5 for every i.

I am giving the probability distribution of i below.

[math]P(I=i)=\left\{ \prod_{j=1}^{i-1}\left(1-\left(N*x_{j}*\left(1-x_{j}\right)^{N-1}\right)\right)\right\} N*x_{i}\left(1-x_{i}\right)^{N-1} [/math]

The average of I is [math]\sum_{i=1}^{inf}P(I=i)*i [/math]

Can anyone give any idea to solve this problem?regards,
Bincy

---------- Post added at 16:41 ---------- Previous post was at 15:13 ----------

[math] \int_{0}^{1}\int_{0}^{1}.....\int_{0}^{1}\left\{ \prod_{j=1}^{i-1}\left(1-\left(N*x_{j}*\left(1-x_{j}\right)^{N-1}\right)\right)\right\} N*x_{i}\left(1-x_{i}\right)^{N-1} *i [/math]

Is it the actual average? If so, how to simplify it? Here integration is infinite times.regards,
Bincy

---------- Post added at 17:44 ---------- Previous post was at 16:41 ----------

I would like to add one more general point and kindly seeking the confirmation from you.

That is,

If the prob distribution of a RV X is a fn of another RV Y, X itself would be a fn of Y.
 
Mathematics news on Phys.org
The answer(mean of I) is N since the probability of success in the 1st, 2nd, 3rd and so on is geometric with parameter 1/N. Ignore my 2nd and 3rd posts
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 21 ·
Replies
21
Views
4K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
417
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K