MHB Probability distribution of a RV is a function of another RV

AI Thread Summary
A random variable I has a countably infinite sample space with a probability distribution dependent on another set of independent and identically distributed random variables Xi, uniformly distributed in [0,1]. The probability distribution is defined mathematically, and the mean of I is expressed as a sum involving P(I=i) multiplied by i. Bincy questions whether the average can be calculated through multiple integrations and seeks simplification methods. Ultimately, it is confirmed that if the probability distribution of a random variable X is a function of another random variable Y, then X is also a function of Y, leading to the conclusion that the mean of I is N, based on geometric distribution principles.
bincy
Messages
38
Reaction score
0
Dear friends,

I have a Random Variable I. Sample space of I is from 1,2,3... inf(countably infinite). It's probability distribution P(I=i) is a function of another set of Random Variables Xi's, which are uniformly distributed in [0,1]. These Random variable are iid. I have to find out the mean of I. The mean of Xi's is 0.5 for every i.

I am giving the probability distribution of i below.

[math]P(I=i)=\left\{ \prod_{j=1}^{i-1}\left(1-\left(N*x_{j}*\left(1-x_{j}\right)^{N-1}\right)\right)\right\} N*x_{i}\left(1-x_{i}\right)^{N-1} [/math]

The average of I is [math]\sum_{i=1}^{inf}P(I=i)*i [/math]

Can anyone give any idea to solve this problem?regards,
Bincy

---------- Post added at 16:41 ---------- Previous post was at 15:13 ----------

[math] \int_{0}^{1}\int_{0}^{1}.....\int_{0}^{1}\left\{ \prod_{j=1}^{i-1}\left(1-\left(N*x_{j}*\left(1-x_{j}\right)^{N-1}\right)\right)\right\} N*x_{i}\left(1-x_{i}\right)^{N-1} *i [/math]

Is it the actual average? If so, how to simplify it? Here integration is infinite times.regards,
Bincy

---------- Post added at 17:44 ---------- Previous post was at 16:41 ----------

I would like to add one more general point and kindly seeking the confirmation from you.

That is,

If the prob distribution of a RV X is a fn of another RV Y, X itself would be a fn of Y.
 
Mathematics news on Phys.org
The answer(mean of I) is N since the probability of success in the 1st, 2nd, 3rd and so on is geometric with parameter 1/N. Ignore my 2nd and 3rd posts
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top