Probability of unions/intersections

  • Thread starter Thread starter e12514
  • Start date Start date
  • Tags Tags
    Probability
e12514
Messages
27
Reaction score
0
Is it true that

Pr( ∪_(n from m to k) ((A_n) ∩ ((A_(n+1))^c)) )
= Pr( ∪_(n from m to k) (A_n) ) - Pr( (A_k) ∩ (A_k+1) )

where A_1, A_2, ... is any sequence of sets.



Well, for the (k=m+1) case I am convinced since I can see they are equal after expanding both sides out, so for example I can see that
Pr((A∩(B^c))∪(B∩(C^c))) = Pr(A∪B) - Pr(B∩C)

but I can't manage to do the same for the (k>m) case in general, so overall I'm not convinced.
 
Physics news on Phys.org
I'm sorry I can't make much sense out of the formula, but assuming its correct, try induction. Assume the proposition is true for k <= m, and add one more term to it and use the truth of the m previous propositions to prove it for (m+1). Will require some grouping and basic properties of sets and cardinalities under union and intersections.
 
That (induction) is exactly what I've been attempting to use to convince myself that it is true. I've got the base step (k=m+1) which was (for me) expand-able to see that both sides are equal.
However I couldn't get through the inductive step. Perhaps it is false then? Or it could also just mean that I got totally lost within the messy algebra?
 
You have a "special symbol" right at the beginning of that formula that will not show up on my (or Maverick280857's) browser.
 
Pr( ∪_(n from m to k) ((A_n) ∩ ((A_(n+1))^c)) )
= Pr( ∪_(n from m to k) (A_n) ) - Pr( (A_k) ∩ (A_k+1) )



or



the probability of [ the union (where n goes from m to k) of [ A_n intersect (A_(n+1) compliment) ] ]

is equal to

the probability of [ the union (where n goes from m to k) of A_n ]
minus
the probability of [ A_k intersect A_(k+1) ]
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top