Probability per atom and per second for stimulated emission to occur

Philip Land
Messages
56
Reaction score
3

Homework Statement


We are investigating hydrogen in a plasma with the temperature 4500 ºC. Calculate the probability per atom and second for stimulated emission from 2p to 1s if the lifetime of 2p is 1.6 ns

Homework Equations


##A=\frac{1}{\Sigma \tau}##

$$A_{2,1} = \frac{8*\pi *h * f^3*B_{2,1}}{c^3}$$

The Attempt at a Solution


[/B]
hmmm, I'm not sure how to approach this problem. I took the inverse of the life time and got that A= ##6.25*10^8 S^{-1}.##

But I'm not sure where to start or what formulas to use.

The only formula I know of which takes temperature into account is
Doppler line width: ##\Delta F = constant * f_0 * \sqrt(T/M) ## which I can't see how to apply in this case at all.

Any input on where to start?
 
Physics news on Phys.org
The probability of stimulated emission will depend on the density of radiation around the atom, which depends on the temperature.
 
  • Like
Likes Philip Land
mfb said:
The probability of stimulated emission will depend on the density of radiation around the atom, which depends on the temperature.
Thanks a lot! I manage to as you said find a relation between radiation density and temperature, (Planck’s radiation law).

Then I used a Radiation balance and solved for ##A_{21} = \rho (f) * \frac{N_1}{N_2}*B_{12}
-B{21}*\rho (f). ##

Where ##g_1*B_{12} = g_2*B_{21}## if we let g1=g2 we get ##B_{12}=B_{21}##

We also know from statistics that ##\frac{N_1}{N_2}= e^\frac{- \Delta E}{kT}##

But my question is. To get A (which I guess I'm supposed to get). I need B and ##\Delta E## But I don't have those quantities... (as I'm aware of).
 
Did you use the given lifetime already?
 
mfb said:
Did you use the given lifetime already?
Yes I used that to get the frequency, used in Plancks radiation law.
 
Philip Land said:
##A_{21} = \rho (f) * \frac{N_1}{N_2}*B_{12} -B{21}*\rho (f). ##
It might help to rearrange this equation as ##N_2A_{21} + N_2B_{21}\rho (f)= N_1B_{12}\rho (f) ##.
Interpret each of the terms. One of the terms is closely related to what you are asked to find.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?

Similar threads

Back
Top