(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

A transmission channel is noisy and a binary bit (assume it is a 0 or a 1) has probability of .11 of being incorrectly transmitted. Suppose the bit is sent n (odd) times and a majority decoder announces which bit is received the majority of the time. Assume retransmissions constitute Bernoulli trials.

(a) Let X be the number of errors in n transmissions. Give a formula for the distribution of X.

(b) What is the probability the message is correctly received, for n=25?

2. Relevant equations

n/a

3. The attempt at a solution

X is discrete, so for part (a) I came up with [tex]p_{x}(x)=.11^{x}.89^{n-x}[/tex] which I'm not convinced is totally right.

For part b I want to calculate [tex]P(X\leq12)[/tex] since this is the probability that the message is correctly received (number of errors is less than half). But if I attempt to calculate the cumulative distribution function using my distribution, I get [tex]\sum^{12}_{x=1}.11^{x}.89^{n-x} = .06195[/tex] which is clearly way too low. Any help?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Probability Question (Random Variables and CDF)

**Physics Forums | Science Articles, Homework Help, Discussion**