How to Determine Temperature Difference Between Two Stars Using Spectral Lines?

  • Thread starter Thread starter Zapped17
  • Start date Start date
  • Tags Tags
    Spectral lines
AI Thread Summary
A weak spectral line in neutral iron has been observed in solar-type stars, with its lower level having an excitation energy of 2 eV. The discussion focuses on determining the temperature difference between two stars based on the equivalent width of this spectral line, which is twice as large for star A compared to star B. The analysis assumes no hydrogen ionization, nearly all iron is singly ionized, and that the partition functions are temperature-independent. The derived equation involves the ratio of temperatures and requires solving for x, but participants express difficulty in progressing from the logarithmic form of the equation. The conversation highlights the complexities of using spectral lines to infer stellar temperatures.
Zapped17
Messages
9
Reaction score
2
Thread moved from the technical forums to the schoolwork forums
TL;DR Summary: A weak spectral line connecting levels in neutral iron has been observed for a number of solar-type stars.
Its lower level has an excitation energy of 2 eV. If the line’s equivalent width is twice as large for star A
as for star B, how great is the difference in temperature (in the layers where the line is formed) between
the two stars? Assume that no hydrogen is ionized, nearly all iron is singly ionized, H− is responsible for
all the continuous opacity, the partition functions are independent

A weak spectral line connecting levels in neutral iron has been observed for a number of solar-type stars.
Its lower level has an excitation energy of 2 eV. If the line’s equivalent width is twice as large for star A
as for star B, how great is the difference in temperature (in the layers where the line is formed) between
the two stars? Assume that no hydrogen is ionized, nearly all iron is singly ionized, H− is responsible for
all the continuous opacity, the partition functions are independent of temperature, and both stars have the
same iron abundance. The dissociation energy of H− is 0.75 eV.

Solution:
Let the temperature difference be dT = T_A - T_B.
Set x = T_A/T_B and dW_A = 2dW_B (by using both the Boltzmann equation and the Saha equation) we get (after some long derivation):
2 = x^{3/2}*e* {((2 eV)/(k*T_B))*(x-1)}.

Finally, if we take natural logarithm on both sides, we obtain:
ln(2) = (3/2)*ln(x) + (2 eV/(k*T_B))*(x-1). But from this step i am stuck what to do, how i am suppose to find x, or have I used wrong method on this exericise?
 
Last edited by a moderator:
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top