SclayP
- 27
- 0
So I'm stuck resolving this integral...
\int^{1}_{0} \sqrt{e^{2x} + 1} \, dx
u=2x ; du=2dx
\frac{1}{2}\int^{2}_{0} \sqrt{e^u + 1} \, du
t=e^u+1 ; dt=e^u du
\frac{1}{2}\int^{e^2 + 1}_{2} \frac{\sqrt{t}}{t-1} \, dt
v=\sqrt{t} ; dv=\frac{1}{2\sqrt{t}}
\int \frac{v^3}{v^2 -1} \, dv
And here i don't know how to proceed, i red i have to do long division but i don't know why... please help me.
Thanks.
\int^{1}_{0} \sqrt{e^{2x} + 1} \, dx
u=2x ; du=2dx
\frac{1}{2}\int^{2}_{0} \sqrt{e^u + 1} \, du
t=e^u+1 ; dt=e^u du
\frac{1}{2}\int^{e^2 + 1}_{2} \frac{\sqrt{t}}{t-1} \, dt
v=\sqrt{t} ; dv=\frac{1}{2\sqrt{t}}
\int \frac{v^3}{v^2 -1} \, dv
And here i don't know how to proceed, i red i have to do long division but i don't know why... please help me.
Thanks.
Last edited by a moderator: