Hi all,

I solved a problem of electrostatics potencial of a cylinder with special condicions. When I plotted the obtained solution, I used this code:

\[Epsilon] = 8.8541878176 10^-12;

R=1;

maxx=10;

Vin[\[Rho]_, \[Phi]_] := (2 \[Sigma] R)/(\[Pi] \[Epsilon])

Sum[If[OddQ[k], 1/k^2 Sin[k \[Phi]] (\[Rho]/R)^k, 0], {k, 0, maxx}]

Vout[\[Rho]_, \[Phi]_] := (2 \[Sigma] R)/(\[Pi] \[Epsilon])

Sum[If[OddQ[k], 1/k^2 Sin[k \[Phi]] (\[Rho]/R)^-k, 0], {k, 0,

maxx}]

V[\[Rho]_, \[Phi]_] :=

If[R < \[Rho], Vin[\[Rho], \[Phi]], Vout[\[Rho], \[Phi]]]

Show[

RevolutionPlot3D[

V[\[Rho], \[Phi]], {\[Rho], 0, 2}, {\[Phi], 0, 2 \[Pi]}],

Graphics3D[{Blue, Opacity[0.5], Cylinder[]}]

]

I got this output:

http://www.alumnos.usm.cl/~jorge.lopezl/problem001.jpg [Broken]

Do you get the same problem with the image?

I want to see a cylinder of radius R=1, centered in the origin with Z as vertical axis.

Greatings.

PS: Here is the NB file: http://www.alumnos.usm.cl/~jorge.lopezl/Griffiths%203.39.nb [Broken]

I solved a problem of electrostatics potencial of a cylinder with special condicions. When I plotted the obtained solution, I used this code:

\[Epsilon] = 8.8541878176 10^-12;

R=1;

maxx=10;

Vin[\[Rho]_, \[Phi]_] := (2 \[Sigma] R)/(\[Pi] \[Epsilon])

Sum[If[OddQ[k], 1/k^2 Sin[k \[Phi]] (\[Rho]/R)^k, 0], {k, 0, maxx}]

Vout[\[Rho]_, \[Phi]_] := (2 \[Sigma] R)/(\[Pi] \[Epsilon])

Sum[If[OddQ[k], 1/k^2 Sin[k \[Phi]] (\[Rho]/R)^-k, 0], {k, 0,

maxx}]

V[\[Rho]_, \[Phi]_] :=

If[R < \[Rho], Vin[\[Rho], \[Phi]], Vout[\[Rho], \[Phi]]]

Show[

RevolutionPlot3D[

V[\[Rho], \[Phi]], {\[Rho], 0, 2}, {\[Phi], 0, 2 \[Pi]}],

Graphics3D[{Blue, Opacity[0.5], Cylinder[]}]

]

I got this output:

http://www.alumnos.usm.cl/~jorge.lopezl/problem001.jpg [Broken]

Do you get the same problem with the image?

I want to see a cylinder of radius R=1, centered in the origin with Z as vertical axis.

Greatings.

PS: Here is the NB file: http://www.alumnos.usm.cl/~jorge.lopezl/Griffiths%203.39.nb [Broken]

Last edited by a moderator: