MHB Problem using integral form of Work-Energy Theorem

AI Thread Summary
The discussion revolves around calculating the time it takes for Earth to fall into the sun using the Work-Energy Theorem. The initial equations set up involve gravitational force and kinetic energy, leading to the derivation of velocity as a function of distance. The user encounters difficulties with the integral for time, resulting in an imaginary number when plugging in bounds. A series of substitutions is suggested to simplify the integral, ultimately leading to a more manageable form. The conversation emphasizes the importance of redefining problems in advanced mathematics to find familiar solutions.
skate_nerd
Messages
174
Reaction score
0
The problem is that the Earth has lost all velocity and begins plummeting toward the sun. I need to find the time it takes for it to hit the sun.

Note: Primes indicate "dummy variables"

This solution begins with the Work K.E. Theorem:
$$\frac{1}{2}mv(x)^2-\frac{1}{2}mv_{o}^2=\int_{x_o}^{x}F(x')dx'$$
Where \(v_{o}=0\) and $$F(x')=F(r)=\frac{-GMm}{r^2}$$
Plugging it all in gives
$$\frac{1}{2}mv(r)^2-\frac{1}{2}m(0)^2=\int_{r_{au}}^{r(t)}-\frac{GMm}{r'^2}dr'$$
$$\frac{1}{2}mv(r)^2=-GMm\int_{r_{au}}^{r(t)}\frac{1}{r'^2}dr'$$
Earth's mass cancels out, as expected, and then we want to solve to get the function \(v(r)\):
$$v(r)=\sqrt{-2GM\int_{r_{au}}^{r(t)}\frac{1}{r'^2}dr'}$$
$$=\sqrt{-2GM(-\frac{1}{r(t)}+\frac{1}{r_{au}})}$$
$$=\sqrt{2GM(\frac{1}{r(t)}-\frac{1}{r_{au}})}$$
Next, we use the following formula to find time as a function of position:
$$t(r)=\int_{r_{au}}^{r_{sun}}\frac{1}{v(r')}dr'$$
$$=\frac{1}{\sqrt{2GM}}{\int_{r_{au}}^{r_{sun}}} \frac{1}{\sqrt{\frac{1}{r(t)}-\frac{1}{r_{au}}}}dr'$$
The above integral gets a very long and gross answer via wolframalpha, and when I try plugging in the bounds I end up with an imaginary number.
Anybody know where I went wrong?
 
Mathematics news on Phys.org
Re: problem using integral form of Work K.E. Thm

skatenerd said:
$$\frac{1}{2}mv(r)^2-\frac{1}{2}m(0)^2=\int_{r_{au}}^{r(t)}-\frac{GMm}{r'^2}dr'$$
$$\frac{1}{2}mv(r)^2=-GMm\int_{r_{au}}^{r(t)}\frac{1}{r'^2}dr'$$
Earth's mass cancels out, as expected, and then we want to solve to get the function \(v(r)\):
$$v(r)=\sqrt{-2GM\int_{r_{au}}^{r(t)}\frac{1}{r'^2}dr'}$$
$$=\sqrt{-2GM(-\frac{1}{r(t)}+\frac{1}{r_{au}})}$$
$$=\sqrt{2GM(\frac{1}{r(t)}-\frac{1}{r_{au}})}$$
Starting from here I would use v = dr/dt, giving
[math] T = \int \frac{dr}{\sqrt{2GM \left ( \frac{1}{r} - \frac{1}{r_{au}} \right ) }} [/math]

There may be some substitutions that will shortcut this, but I prefer to work one substitution at a time. The method isn't that bad, but you really need to see it before you can do it on your own.

Let u = 1/r. Then the integral becomes
[math]T = -\int \frac{1}{\sqrt{Au - B}}\frac{1}{u^2}du[/math]
(where A and B are the appropriate constants.)

Now let y = Au - B. Then
[math]T = -A \int \frac{1}{\sqrt{y}} \frac{1}{(y + B)^2} dy[/math]

Let [math]z = \sqrt{y}[/math]. Then
[math]T = -2A \int \frac{1}{(z^2 + B)^2} dz[/math]

Let [math]z = \sqrt{B}~tan( \theta )[/math]. Then
[math]T = -\frac{2A}{B^{3/2}} \int cos^2( \theta )~d \theta [/math]

You can take it from here.

-Dan
 
Last edited by a moderator:
Re: problem using integral form of Work K.E. Thm

Wow, yeah I don't think I would have ever come up with that on my own haha. Thanks for the help.
 
Re: problem using integral form of Work K.E. Thm

skatenerd said:
Wow, yeah I don't think I would have ever come up with that on my own haha. Thanks for the help.
It highlights something I've noted in the more advanced Mathematics...keep redefining the problem until you get something familiar! (Cool)

-Dan
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top