erobz
Gold Member
- 4,442
- 1,839
Just for clarification, our formulas don't match (and that is fine, but could lead to confusion).kuruman said:A different approach, is based on the idea of effective mass and effective acceleration. When mass ##m_1## has constant acceleration ##a_1## it doesn't matter whether there is another Atwood machine or an effective mass ##m_{\text{eff.}}## attached to the other nd of the string.
Step 1: Setup.
We assume that ##m_1## accelerates down (##m_1>m_{\text{eff.}}##) Using the standard Atwood machine formulas, the acceleration and the tension are $$a_1=\frac{m_1-m_{\text{eff.}}}{m_1+ m_{\text{eff.}}}g~;~~T_1=\frac{2m_1 m_{\text{eff.}}}{m_1+ m_{\text{eff.}}}g.$$Step 2: Find the effective mass.
On the other side of the rope we have an Atwood machine that is accelerating up with acceleration ##a_1##. The situation is equivalent to an Atwood machine attached to a fixed support in an environment where the effective acceleration of gravity is ##g_{\text{eff.}}=g+a_1##. Then tension ##T_2## in the second Atwood machine is $$T_2=\frac{2m_2 m_3}{m_2+ m_3}(g+a_1)=\frac{2m_2 m_3}{m_2+ m_3}\left({1+\frac{m_1-m_{\text{eff.}}}{m_1+ m_{\text{eff.}}}}\right)g.$$(I replaced ##M## in the original problem with ##m_3## for parallel structure.)
But ##T_2=\frac{1}{2}T_1## which gives $$\frac{2m_2 m_3}{m_2+ m_3}\left({1+\frac{m_1-m_{\text{eff.}}}{m_1+ m_{\text{eff.}}}}\right)g=\frac{m_1 m_{\text{eff.}}}{m_1+ m_{\text{eff.}}}g\implies m_{\text{eff.}}=\frac{4m_2m_3}{m_2+m_3}.$$
Step 3: Find the acceleration of ##m_1.##
$$a_1=\frac{m_1-m_{\text{eff.}}}{m_1+ m_{\text{eff.}}}g=\frac{m_1-\frac{4m_2m_3}{m_2+m_3}}{m_1+ \frac{4m_2m_3}{m_2+m_3}}g=\frac{m_1(m_2+m_3)-4m_2m_3}{m_1(m_2+m_3)+4m_2m_3}g.$$Step 4: Find the tensions. $$\begin{align} & T_1=\frac{2m_1 m_{\text{eff.}}}{m_1+ m_{\text{eff.}}}g=\frac{2m_1 \frac{4m_2m_3}{m_2+m_3}}{m_1 +\frac{4m_2m_3}{m_2+m_3}}g=\frac{8m_1m_2m_3}{m_1(m_2+m_3)+4m_2m_3}g \nonumber \\ & T_2=\frac{1}{2}T_1=\frac{4m_1m_2m_3}{m_1(m_2+m_3)+4m_2m_3}g. \nonumber \end{align}$$
Step 5: Find the acceleration of ##m_2##.
Assuming that ##a_2## accelerates down, ##T_2-m_2g=-m_2 a_2\implies a_2=g-\dfrac{T_2}{m_2}.## Then, $$a_2=g-\frac{4m_1m_3}{m_1(m_2+m_3)+4m_2m_3}g=\frac{m_1(m_2+m_3)+4m_3(m_2-m_1)}{m_1(m_2+m_3)+4m_2m_3}g.$$
That is because I'm measuring ##a_2## w.r.t the accelerating pulley ( ## m_1 \to 0, a_2 \to 0g##) . You are measuring ##a_2## w.r.t the inertial frame ( ##m_1 \to 0, a_2 \to g## ).
Had me scared for a minute!