rosemetal17
- 2
- 0
Homework Statement
A particle is projected with initial velocity u\cos\alpha\vec{i}+u\sin\alpha\vec{j} m/s from a point 0 on a horizontal plane.
If this particle passes through two points whose displacements from 0 are 3\vec{i}+\vec{j} and \vec{i}+3\vec{j}
show that the range is \frac{13}{4} and that \tan\alpha = \frac{13}{3}
Homework Equations
Range
\frac{2u^2\sin\alpha\cos\alpha}{g}
S, displacement
S = ut+\frac{1}{2}at^2
The Attempt at a Solution
So, if the initial velocity is u\cos\alpha\vec{i}+u\sin\alpha\vec{j} m/s, then the particle is projected at u m/s at angle \alpha to the horizontal.
Then
S_x = ut\cos\alpha
S_y = ut\sin\alpha-\frac{gt^2}{2}
and if the displacement points are 3\vec{i}+\vec{j} and \vec{i}+3\vec{j}, then:
S_x = ut_1\cos\alpha = 3
S_y = ut_1\sin\alpha-\frac{gt_1^2}{2} = 1
and
S_x = ut_2\cos\alpha = 1
S_y = ut_2\sin\alpha-\frac{gt_2^2}{2} = 3
I tried solving for the last two pair of equation. For each pair, I eliminated t. So I got two separate equations in total involving \alpha and u only.
So here is where I'm stuck.
I tried solving for \alpha and u, but I just...can't!? I have no idea what I'm doing wrong, whether if it's algebraic error, or there's something wrong with the formulas. I've been stuck on this for the 5th hour now, and have redone this millions of times.. But still..

I'm beginning to suspect a problem with the question itself! Though I seriously doubt it..

Help'd be muchly appreciated!
Thanks in advance..