Projectile motion - surface of max range

AI Thread Summary
The discussion revolves around a physics problem involving projectile motion and the maximum range of a gun that can fire shells in any direction. The key equation to derive is z = v²/(2g) - ρ²g/(2v²), which defines the surface the gun can hit. The user initially approaches the problem by applying conservation of energy to find the maximum height and then attempts to relate this to the range using parabolic motion principles. However, they express uncertainty about their approach and seek clarification on deriving the correct relationship between height and range. Ultimately, they receive encouragement to reassess their method without shortcuts to arrive at the solution.
insynC
Messages
66
Reaction score
0
Doing an Analytical Mechanics course and we're just reviewing some classical physics and this question came up. Cheers for any help.

Homework Statement



A gun can fire shells in any direction with the same speed v. Ignoring air resistance and using cylindrical polar coordinates with the gun at the origin and z measured vertically up, show that the gun can hit any object inside the surface:

z = v²/(2g) - ρ²g/(2v²)

(where ρ & z are as per cylindrical coordinates)


The Attempt at a Solution



My thought was that the surface is the set of points which are the farthest the gun can reach. As such the max vertical height can be found by conservation of energy:

Max height when all vertical component of KE turned into PE.

i.e. if θ is the angle trajectory from the ground:

1/2 m (vsinθ)² = mgz

Rearranging:

z = (vsinθ)²/(2g) , which I think gives the max height the bullet will reach for a given θ. (Note that if θ = 90° => ρ = 0 gives z = v²/(2g) as per the answer).

Next I wanted to determine ρ at the max height. As the motion will be parabolic, the max height should be achieved at half of the range for a given θ.

Invoking Newton's second law and bashing through algebra an equation for z in terms of ρ can be found (by eliminating θ), and then setting z = 0 a solution for ρ(range) can be found, which when halved is ρ(max z):

ρ(max z) = 2v²/g sinθcosθ

Where I'm at

At this stage I have tried bashing these two things around a bit with little success in deriving the given result. I feel the problem shouldn't be this complicated and that I may have taken a wrong turn early on.

Any suggestions would be greatly appreciated.
 
Physics news on Phys.org
Hi insynC! :smile:
insynC said:
Next I wanted to determine ρ at the max height. As the motion will be parabolic, the max height should be achieved at half of the range for a given θ.

I feel the problem shouldn't be this complicated and that I may have taken a wrong turn early on.

Yes … you're finding the range at ground level

start again, and no short-cuts, this time! :wink:
 
Thanks for the help, it came out.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top