rg2004
- 22
- 0
Homework Statement
Consider a projectile subject to air resistance. The drag force is F=-\hat{v} C v^{a} where C and a are constants and v=\dot{r}. Restrict the problem to 2-D and take y in the vertical direction. Take the magnitude of initial velocity to be v_{0} and the initial position to be the origin. Introduce dimensionless coordinates X,Y,Z by relations
x=\frac{v_{0}^{2}}{g}X
y=\frac{v_{0}^{2}}{g}Y
t=\frac{v_{0}}{g}T
Given the above definitions show that
\frac{d^2Y}{dT^2}=-1-k V^{a-1} \frac{dY}{dT}
\frac{d^2X}{dT^2}=-k V^{a-1} \frac{dX}{dT}
where k=\frac{C v_{0}^a}{m g}
V=\sqrt{(\frac{dY}{dT})^2+(\frac{dX}{dT})^2}
The Attempt at a Solution
x=\frac{v_{0}^{2}}{g}Xdx=\frac{v_{0}^{2}}{g}dX
y=\frac{v_{0}^{2}}{g}Y
dy=\frac{v_{0}^{2}}{g}dY
t=\frac{v_{0}}{g}T
dt=\frac{v_{0}}{g}dT
finding d?/dT equations
\frac{dx}{dt}=\frac{\frac{v_{0}^{2}}{g}dX}{\frac{v_{0}}{g}dT}<br /> =v_0\frac{dX}{dT}<br />
\frac{dy}{dt}=\frac{\frac{v_{0}^{2}}{g}dY}{\frac{v_{0}}{g}dT}<br /> =v_0\frac{dY}{dT}<br />
finding \frac{d^2?}{dT^2}
\frac{d^2x}{dt^2}=\frac{dx}{dt}\frac{dx}{dt}=v_0^2\frac{d^2X}{dT^2}
\frac{d^2y}{dt^2}=\frac{dy}{dt}\frac{dy}{dt}=v_0^2\frac{d^2Y}{dT^2} From force equation:
F_{d,x}=m \ddot{x}=-\hat{v} C v^{a}=\frac{-\dot{x}}{\sqrt{\dot{x}^2+\dot{y}^2}} C (\sqrt{\dot{x}^2+\dot{y}^2})^{a}
=-\dot{x} C \sqrt{\dot{x}^2+\dot{y}^2}^{a-1}m v_0^2\frac{d^2X}{dT^2}=-(v_0\frac{dX}{dT}) C \sqrt{(v_0\frac{dX}{dT})^2+(v_0\frac{dY}{dT})^2}^{a-1}
m v_0^2\frac{d^2X}{dT^2}=-v_0^a \frac{dX}{dT} C \sqrt{(\frac{dX}{dT})^2+(\frac{dY}{dT})^2}^{a-1}
\frac{d^2X}{dT^2}=-\frac{v_0^a C}{m v_0^2} V^{a-1} \frac{dX}{dT}
\frac{d^2X}{dT^2}=-k \frac{g}{v_0^2} V^{a-1} \frac{dX}{dT}
Which is not what I'm supposed to get. I must be messing up a rule or two somewhere.
Thank you.
Last edited: