Projective coordinates vs vectors

  • Thread starter Thread starter Stephen Tashi
  • Start date Start date
  • Tags Tags
    Coordinates Vectors
Stephen Tashi
Science Advisor
Homework Helper
Education Advisor
Messages
7,864
Reaction score
1,602
There is a technical distinction between a vector and the coordinates of a vector. Are projective (also called "affine") coordinates the coordinates of vectors?

I'm thinking of how translation is accomplished by matrix multiplication. For example the point (x,y) in 2-D is given coordinates (x,y,1) and translation by (h,v) is represented as:
\begin{pmatrix} 1&0&h \\ 0&1&v \\ 0&0&1 \end{pmatrix} \begin{pmatrix} x \\ y\\ 1 \end{pmatrix} = \begin{pmatrix} x+h \\ y+v \\ 1 \end{pmatrix}.

Students are told that matrix multiplication performs a linear transformation on a vector space and also disturbed by the exercise showing that translation by a (non-zero) vector is not a linear transformation . What are the saving legalisms here?
 
Physics news on Phys.org
Projective and affine coordinates are definitely not the same thing. Projective space (in 2 dimensions let's say) is the set of all points [x:y:z] where [a:b:c] and [x:y:z] are considered equivalent if there is some number k such that ak=x, bk=y, ck=z.

It is the case that if you restrict to the set of [x:y:1] that there is an obvious bijection between these points and points of the form (x,y) with no equivalence relation - these (x,y) coordinates are what is called affine space.

At first glance that matrix multiplication appears to make translation a linear operation, but the set of points of the form (x,y,1) is not a vector space in any way that will make that matrix multiplication a linear transformation. For example it is tempting to just declare (x,y,1)+(a,b,1) = (a+x,y+b,1) but then if the matrix is T, we no longer get that T(x,y,1) + T(a,b,1) = T(a+x,y+b,1) since the left hand side will be shifted by twice what the right hand side is shifted by.
 
When I taught an intro class in Linear Algebra, I told the students that , while innacurate, any expression of x of the type ax+b is linear, and that the linearity has to see with the fact that x is raised to the first degree. When someone pinned me down and wanted more of an explanation , I said that we were actually dealing with affine maps, which are the composition of a translation and a linear map. But I agree with you, it is confusing.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top