Proof Deduction: a>1 & ⁿ√a = 1+x | Prove 0 < x < a/n

  • Thread starter Thread starter samii
  • Start date Start date
  • Tags Tags
    Proof
samii
Messages
8
Reaction score
0
if a>1 and ⁿ√a = 1 + x, prove that 0 < x < a/n
Deduce that ⁿ√a →1, n →∞
confused!
 
Physics news on Phys.org
hi samii! :smile:

rewrite n√a = 1 + x :wink:
 


If \sqrt[n]{a}= 1+ x, then a= (1+ x)^n. Expand using the binomial theorem to get that a= 1+ nx+ positive terms so that 1+ nx< a. Since x< a/n, as n goes to infinity, x goes to 0.
 


hii again :)
thanks also if 0 < a < 1
what is the corresponding result?
 
then n√a would be < 1, so you'd have to write n√a = 1 - x …

so what would happen then? :smile:
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top