Proof: f(x) Has No Local Max/Min

  • Thread starter Thread starter BrownianMan
  • Start date Start date
  • Tags Tags
    Local Proof
BrownianMan
Messages
133
Reaction score
0
Show that the function f(x) = x^21 + x^11 + 13x does not have a local maximum or minimum.

So f '(x) = 21x^20 + 11x^10 + 13.

My reasoning is as follows:

Since the exponents (10 and 20) are even, 21x^20 and 11x^10 can never be negative, and thus, summing them can never produce a negative number to make the expression 0 = 21x^20 + 11x^10 + 13 true. So there are no critical numbers, and therefore no local max or min.

Would this be correct?
 
Physics news on Phys.org
Yes, since for stationary/critical/etc... points to exist, your function's derivative has to have points in which its value is 0. Since your function can never have 0 values, you're correct.
The graphical interpretation is also quite neat. Try these in Mathematica, it'll all be clear in a second, and you can also use it in the case of more complicated functions:

Plot[x^{21} + x^{11} + {13*x}, \{ x, -10, 10\\\}]

Plot[21*x^{20} + 11*x^{10} + 13*x, \{ x, -10, 10\\\}]
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top