SithsNGiggles
- 183
- 0
Homework Statement
The question is "Prove
f(\bigcap_{\alpha \in \Omega} A_\alpha) \subseteq \bigcap_{\alpha \in \Omega} f(A_\alpha)
where f:X \rightarrow Y and \{A_\alpha : \alpha \in \Omega\} is a collection of subsets of X.
Also, prove the statement's equality when f is an injective function.
Homework Equations
The Attempt at a Solution
Let f(x) \in f(\bigcap_{\alpha \in \Omega} A_\alpha).
Then \exists x \in \bigcap_{\alpha \in \Omega} A_\alpha,
i.e. \exists x \in A_\alpha \forall \alpha \in \Omega.
It follows that \exists f(x) \in f(A_\alpha) \forall \alpha \in \Omega,
i.e. f(x) \in \bigcap_{\alpha \in \Omega} f(A_\alpha).
Thus f(x) \in f(\bigcap_{\alpha \in \Omega} A_\alpha) \Rightarrow f(x) \in \bigcap_{\alpha \in \Omega} f(A_\alpha), and hence,
f(\bigcap_{\alpha \in \Omega} A_\alpha) \subseteq \bigcap_{\alpha \in \Omega} f(A_\alpha).
I tried following a similar thought process in proving the reverse, but I end up showing that the RHS is a subset of the LHS. Although it works out for the injective f, where does it go wrong when f is not injective?