Proof: Identity formula of sin(x)^2 + cos(x)^2 = 1 for *degrees*

Persimmon
Messages
22
Reaction score
0

Homework Statement



We are given two sets of functions: sin(x) and cos(x); S(x) and C(x). In the former, x is measured in radians, in the latter x is measured in degrees.
It is possible to convert between the two using the following relations:
sin(x) = S(mx), cos(x) = C(mx) where m=180/pi
S(x) = sin(nx), C(x) = cos(nx), where n = pi/180

Given the identity formula sin(x)^2 + cos(x)^2 = 1, what is a similar identity relating S(x) and C(x)?

Homework Equations


sin(x) = S(mx), cos(x) = C(mx) where m=180/pi
S(x) = sin(nx), C(x) = cos(nx), where n = pi/180
sin(x)^2 + cos(x)^2 = 1

The Attempt at a Solution



I tried to show sin(nx)^2 + cos(nx)^2 = 1, which then implies S(x)^2 +C(x)^2 = 1

(d/dx)(sin(nx)^2 + cos(nx)^2) = (d/dx)1
2*sin(nx)*cos(nx)*(n) -2*sin(nx)*cos(nx)*(n) = 0 for all n contained in ℝ,
so S(x)^2 +C(x)^2 = 1

Is this right in any way? The topic being covered is derivatives so I thought I need to use them.
Can I simply make the assumption that sin(nx)^2 + cos(nx)^2 = 1? How should I justify this? Is there any other sort of manipulation I can do to, perhaps starting with sin(x)^2 + cos(x)^2 = 1 and then subbing in sin(x) = S(mx) and cos(x) = C(mx), and then getting the "m"s out of the brackets in some way?
 
Physics news on Phys.org
I see no need for calculus here. You know sin(x)^2 + cos(x)^2 = 1 is true for all x. Given S(y^2) +C(y)^2 for some y, what might be a useful x to consider?
 
So can I simply say sin(x)^2 + cos(x)^2 = 1 is true for all x, so sin(nx)^2 + cos(nx)^2 = 1?
I'm a bit confused about why I would put y into S(y)^2 + C(y)^2... why wouldn't I put y into the sin and cos identity?
ie: sin(y)^2 + cos(y)^2 = 1 for all y, take y = nx, therefore S(x)^2 + C(x)^2 = 1
 
Persimmon said:
So can I simply say sin(x)^2 + cos(x)^2 = 1 is true for all x, so sin(nx)^2 + cos(nx)^2 = 1?
I'm a bit confused about why I would put y into S(y)^2 + C(y)^2... why wouldn't I put y into the sin and cos identity?
ie: sin(y)^2 + cos(y)^2 = 1 for all y, take y = nx, therefore S(x)^2 + C(x)^2 = 1

Yes. I introduced y to make it less confusing, but it isn't necessary.
 
  • Like
Likes 1 person
Got it, thanks! I was thinking it must be more complex than it really is.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top