Proof in relation with totally and partially ordered sets

mahler1
Messages
217
Reaction score
0
1. Homework Statement .

Let A be a chain and B a partially ordered set. Now let f be an injective function from A to B and suppose that if a,b are elements of A and a≤b, then f(a)≤f(b). Prove that f(a)≤f(b) implies a≤b.

3. The Attempt at a Solution .

I want to check if this proof by contradiction is correct:

Let a,b be elements in A such that f(a)≤f(b). Since A is a chain, a and b must satisfy a≤b or a>b. Suppose a>b, then the statement a≥b is also true, so, by hypothesis, f(a)≥f(b). But then, f(a)<=f(b)<=f(a). B is a partially ordered set, so by the antisymmetric property of posets f(a)≤f(b) and f(a)≥f(b) imply f(a)=f(b). The function f is injective and, by definition of injectivity, f(a)=f(b) implies a=b, which contradicts the assumption a>b. Therefore, it must be a≤b.
 
Physics news on Phys.org
Looks good to me.
 
  • Like
Likes 1 person
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top