Arkuski
- 38
- 0
Prove that the series \displaystyle\sum_{k=1}^{\infty}\sqrt[k]{k+1}-1 diverges.
I thought that I could show the n^{th} term was greater than \frac{1}{n} but this is turning out to be more difficult than I imagined. Is there a neat proof that n^n>(n+1)^{n-1}?
I thought that I could show the n^{th} term was greater than \frac{1}{n} but this is turning out to be more difficult than I imagined. Is there a neat proof that n^n>(n+1)^{n-1}?