odolwa99
- 85
- 0
Can anyone help me confirm if I've solved this correctly?
Many thanks.
Prove that \sqrt{ab}>\frac{2ab}{a+b} if a & b are positive & unequal.
if (\sqrt{ab})^2>(\frac{2ab}{a+b})^2
if ab>\frac{4a^2b^2}{(a+b)^2}
if ab(a^2+2ab+b^2)>4a^2b^2
if a^3b+2a^2b^2+ab^3-4a^2b^2>0
if a^3b-2a^2b^2+ab^3>0
if (a^2b-ab^2)>0...true
Many thanks.
Homework Statement
Prove that \sqrt{ab}>\frac{2ab}{a+b} if a & b are positive & unequal.
Homework Equations
The Attempt at a Solution
if (\sqrt{ab})^2>(\frac{2ab}{a+b})^2
if ab>\frac{4a^2b^2}{(a+b)^2}
if ab(a^2+2ab+b^2)>4a^2b^2
if a^3b+2a^2b^2+ab^3-4a^2b^2>0
if a^3b-2a^2b^2+ab^3>0
if (a^2b-ab^2)>0...true